- Indico style
- Indico style - inline minutes
- Indico style - numbered
- Indico style - numbered + minutes
- Indico Weeks View
Please visit Jefferson Lab Event Policies and Guidance before planning your next event: https://www.jlab.org/conference_planning.
Strongly interacting many-body quantum systems are computationally inefficient to model due to the exponential scaling of resources required with system size and QCD is no exception. The fermionic sign problem and a non-trivial interplay of dynamics at different energy scales make calculations at finite density and real-time dynamical phenomena intractable for even today’s exa-scale computers. Quantum computers present an opportunity to address classically intractable problems by leveraging state-superposition and entanglement to achieve information densities that scale exponentially with system size. However, achieving a large-scale, fault-tolerant, universal quantum computer remains challenging with today’s state-of-the-art quantum hardware. Quantum simulation offers an alternative approach to gaining insight into classically intractable theories by pairing precise (though imperfect) control of a quantum system with aspects of the system’s natural behavior. In this talk, I will review leading quantum hardware platforms with an emphasis on how they have been applied to calculations in nuclear physics. I will also report on our progress developing and co-designing a quantum simulation platform that is tailored to address non-perturbative phenomena in QCD. Our work builds upon recent advances in the manipulation of neutral atoms trapped in optical tweezer arrays.
Strongly interacting many-body quantum systems are computationally inefficient to model due to the exponential scaling of resources required with system size and QCD is no exception. The fermionic sign problem and a non-trivial interplay of dynamics at different energy scales make calculations at finite density and real-time dynamical phenomena intractable for even today’s exa-scale computers. Quantum computers present an opportunity to address classically intractable problems by leveraging state-superposition and entanglement to achieve information densities that scale exponentially with system size. However, achieving a large-scale, fault-tolerant, universal quantum computer remains challenging with today’s state-of-the-art quantum hardware. Quantum simulation offers an alternative approach to gaining insight into classically intractable theories by pairing precise (though imperfect) control of a quantum system with aspects of the system’s natural behavior. In this talk, I will review leading quantum hardware platforms with an emphasis on how they have been applied to calculations in nuclear physics. I will also report on our progress developing and co-designing a quantum simulation platform that is tailored to address non-perturbative phenomena in QCD. Our work builds upon recent advances in the manipulation of neutral atoms trapped in optical tweezer arrays.
invite ES&H or Ed Folts (or his deputy) to give a talk regarding new safety training / requirements at the lab, given the recent changes made at the lab
at the residence facility?
The deuteron, the most fundamental nuclear system, has a wave function predominantly characterized by the proton-neutron ($pn$) component. As such, it serves as a valuable tool for probing various aspects of the $pn$ strong interaction. Studying the $pn$ system at short distances addresses fundamental questions in nuclear dynamics, such as the relativistic description of nuclear structure, the dynamics of the repulsive core in nucleon-nucleon ($NN$) interactions, the role of non-nucleonic degrees of freedom, and the transitions between hadrons and quarks at very short distances. Utilizing a tensor-polarized deuteron target in electro-production reactions opens up new possibilities for exploring phenomena in short-range hadronic and nuclear physics. Additionally, $pn$ potentials like AV18 and CD-Bonn show significant differences in their high-momentum projections, which correspond to small inter-nucleon distances. Theoretical studies suggest that these differences could be identified and measured through specialized electro-disintegration experiments involving a tensor-polarized target.
The recently conducted JLab Hall A experiment E12-09-019, using the SBS spectrometer, measured the GMn nucleon Form Factor for momentum transfers up to 13.5 GeV^2. A combination of GMn and GMp data at such high Q^2 will allow us to do a flavor decomposition of the Dirac nucleon form factor F1 and extract the ratio F1_d / F1_u, which was surprisingly predicted to be close to zero in some models. The SBS apparatus allows us to get data for even high momentum transfer, up to 18 GeV^2. We are planning to submit at experiment to the upcoming JLab PAC in 2025 to perform such a measurement for GMn, using the SBS spectrometer in the Hall C at JLab.
DDVCS corresponds to the scattering of a spacelike photon at high virtuality off a quark, followed by the emission of a timelike photon, and can be parametrized by the so-called GPDs, accessing transverse positions versus longituninal momenta of partons. We recently proposed to extend the setup intended to measure unpolarized TCS in Hall C with the addition of a new muon detector. GPDs can lead to interpretation such as tomographic views of the nucleon's content, however, this is assuming we can decorrelate it's kinematic variable dependencies to relate it to actual measurements which is possible by measuring some specific kinematics in the DDVCS+BH reaction.
Flash talks: 1) Proton elastic L/T at 10 GeV^2 (Bogdan W), 2)
DIS in D(e, e' n_s) for a slow spectator neutron (Bogdan W), 3) Exclusive phi meson production (Kemal Tezgin)