Measurement of the ratio $R = \sigma_L / \sigma_T$ in Semi-Inclusive Deep Inelastic Scattering

E12-06-104, Spokespersons: P. Bosted, R. Ent, E. Kinney, and H. Mkrtchyan

- This experiment will make precise measurements of R in charged π and K SIDIS on H and D targets as a function of Q^2 , fractional hadron momentum z, and hadron transverse momentum p_T
- Standard technique to measure R: Vary the virtual photon polarization ε by using different incident beam energies and electron scattering angles, while keeping the Q^2 , x, z, and p_{τ} constant. Will use the two magnetic spectrometers in Hall C.

 $\varepsilon = \left[1 + 2\left(1 + \frac{Q^2}{4M^2x^2}\right)(\tan\frac{\theta}{2})^2\right]^{-1} \qquad \sigma = \Gamma(\sigma_{\rm T} + \varepsilon\sigma_{\rm L} + \varepsilon\cos(2\phi)\sigma_{\rm TT} + [\varepsilon(\varepsilon+1)/2]^{1/2}\cos(\phi)\sigma_{\rm LT})$

 $R = \sigma_L / \sigma_T$ is a basic aspect of the photon-parton interaction

- First DIS evidence that quarks had spin ½ ($R \rightarrow 0$ as $Q^2 \rightarrow \infty$)
- At moderate fixed x, falls as $1/Q^2$
- At moderate Q² finite, non-zero, sensitive to indirect gluon effects and higher twist
- In naïve quark model, sensitive to intrinsic transverse momentum k_T :

$$R = 4(M^2x^2 - \langle k_t^2 \rangle)/(Q^2 + 2\langle k_t^2 \rangle)$$

Connected to TMDs!

Previous compared to proposed

Projections for E12-06-104 vs existing Cornell Data (projections assume $R_{SIDIS} = R_{DIS}$) Comparable 1.6% systematic uncertainties not indicated

Projections: Solid Black H, Open Black D π Cornell:

Top panel: solid red (open blue) π^+ (π^-) on LH₂

Middle : solid red (open blue) dots are π^+ (π^-) on LH₂ solid red (open blue) squares are π^+ (π^-) on LD₂

Bottom : solid red (open blue) dots are for π^+ (π^-) on LH₂

• We will be able to test many common assumptions used in SIDIS analyses:

$$R_{SIDIS}^{\pi^{+}} = R_{SIDIS}^{\pi^{-}}? \qquad R_{SIDIS}^{H} = R_{SIDIS}^{D}? \qquad R_{SIDIS}^{\pi^{+}} = R_{SIDIS}^{K^{+}}? \qquad R_{SIDIS}^{K^{+}} = R_{SIDIS}^{K^{-}}?$$

- Important for determining spin structure function g_1^h (need term $(1 + \varepsilon R)$ to get g_1^h/F_1^h from A_{\parallel}^h)
- At low z, expect DIS Q² behavior ($\sim 1/Q^2$), but as z \rightarrow 1, expect Deep-Exclusive Q² behavior ($\sim Q^2$)
- Completely unknown p_T behavior, which might impact on TMD analyses

E12-24-001: Measurement of the Nuclear Dependence of $R = \sigma_I / \sigma_T$ in Semi-Inclusive Deep Inelastic Scattering

Proposal to PAC 52

Spokespersons: P. Bosted (W&M), W. Brooks (USM), R. Ent (JLab), D. Gaskell* (JLab), E. Kinney (U. Colorado), H. Mkrtchyan (Yerevan)

E12-24-001: Nuclear Dependence of R in SIDIS

<u>Goal</u>: Directly measure the nuclear dependence of $R=\sigma_L/\sigma_T$ in semi-inclusive DIS

- → No existing measurements of nuclear dependence of R in SIDIS
- → Potential impact on SIDIS results (dilution factor for polarized targets)
- → Potential impact on measurements of hadronattenuation
- → Exploratory measurement to determine if more comprehensive program merited

Experiment: Measure cross sections and ratios for H, D,

- C, Cu targets at 3 beam energies
- \rightarrow Allows LT separation
- → E12-06-104 (R in SIDIS on H and D) in Hall C experiment scheduled for CY2025.
- → PR12-24-001 with E12-06-104 at select kinematics adding nuclear targets (¹²C and ⁶⁴Cu).

SLAC E140: Nuclear Dependence of R in DIS
PR12-24-001: Nuclear Dependence of R in SIDIS (projected precision)

Beam time request: 5 days

Extraction of $R_A - R_H$

Ultimate goal is to extract nuclear dependence of R in SIDIS \rightarrow Rather than comparing R_A to R_H directly, precision can be improved by looking at ε dependence of target ratio

→ Point-to-point systematic uncertainty should be on the order of 1% for target ratio

$$\frac{\sigma_A}{\sigma_H} = \frac{\sigma_A^T}{\sigma_H^T} [1 + \epsilon' (R_A - R_H)]$$
$$\epsilon' = \epsilon / (1 + \epsilon R_H)$$

Requires measurement/knowledge of R_H , but since absolute value is small, not a large contribution to overall uncertainty

Example: R_A-R_D from SLAC E140 (inclusive DIS)

Beam Time Breakdown

Targets:

C = 3% RL (1.28 g/cm²) Cu = 6% RL (0.77 g/cm²)

Beam currents:

 I_{beam} = 25-50 μ A

Statistics: x=0.4, 0.5: 10k events x=0.2: 5k events for low z 10k events z=0.85

x	Q² (GeV)²	Z	3	Target	Time (π+) (hrs)	Time (π-) (hrs)
0.2	2.0	0.3-0.85 (<mark>0.4-0.65</mark>)	0.34, 0.66, 0.80	С	15.3	9.8
				Cu	19.1	13.5
			Subtota	l (x=0.2)	34.4	23.3
0.4	4	0.5	0.31, 0.65, 0.79	С	7.3	-
				Cu	12.9	-
			Subtota	l (x=0.4)	20.2	-
0.5	5	0.5	0.30, 0.64, 0.79	С	14.5	-
				Cu	16.4	-
			Subtota	l (x=0.5)	30.9	-
			Total Product	ion Time	85.5	23.3

E12-06-104: Original Choice of Kinematics & Beam Time

• Map R^{H}_{SIDIS} and R^{D}_{SIDIS} as a function of z

at x = 0.2 and Q^2 = 2.0 GeV²

- Need to experimentally see if $R^{H}_{SIDIS} = R^{D}_{SIDIS}$, 168 Hours just as $R^{H}_{DIS} = R^{D}_{DIS}!$

• Map R^{H}_{SIDIS} as a function of z at x = 0.4 and Q^{2} = 4.0 GeV² 319 Hours

- Test dominance of quark fragmentation

- Study the inclusive-exclusive connection (soft vs. hard gluon exchange?)

- Map R^{H}_{SIDIS} as a function of p_{T}^{2} at x = 0.3 and Q² = 3.0 GeV² 311 Hours
 - Extend understanding of fragmentation process to high \mathbf{p}_{T}

- No guidance from factorization theorems here yet

• Add kinematics to map R^{H}_{SIDIS} for $Q^2 = 1.5 - 5.0 \text{ GeV}^2$

88 Hours

- Does R_{SIDIS} behave like R_{DIS} as function of $Q^2?$

These data required for our understanding of SIDIS, and will further our understanding of fragmentation. These data enter into completely unknown territory! +75 Hours

(overhead)

= 40 days

Goals

- scan in x at fixed z = 0.5 and small P_t
- scans in z at low P_t at two values of x
- scan in P_t at fixed x and z
- do both π^+ and π^- on proton target at every setting
- also take data with deuteron at a subset of the settings
- do carbon and copper at same settings as deuteron

Selection of (x, Q^2) settings

- Measuring R require multiple beam energies to achieve $\Delta \epsilon > 0.25$.
- Available beam energies: 6.3 GeV 8.4 GeV 10.5 GeV
- Also want W >> 2 GeV to be in "deep region.
- Need E'/E > 0.2 to control radiative corrections and backgrounds in electron arm.
- For a lower beam energy of 6.3 GeV, $\nu_{max} = 5.3$ GeV (and $Q^2 = 10x$)
- For a lower beam energy of 8.4 GeV, $\nu_{max} = 6.8$ GeV (and $Q^2 = 13x$)
- Experimental constraint: $13.5 < \theta < 48 \text{ deg.}$
- Experimental constraint: $7.5 < \theta_{\pi} < 20$ deg.

- Four values of x at lower v. Lowest x vlues use only 3 and 4 pass (HMS angle too small at 5-pass).
- One value of x at higher v to explore higher Q² and W. Better setting for P_t and z scans too.

Selection of *z* – *scan* **settings**

- Cannot do the two lowest x because the beam current that keeps SHMS 3/4 rate below 900 kHz is too low (less than 6 µA). So, pick x = 0.25 for the lower-x z-scan.
- Complement with a z scan at the highest x setting.
- Use full momentum range of SHMS ($-16\% < \delta < 35\%$) to cover 0.3 < z < 0.8 with just three z central settings.
- Already have data at 3, 4, and 5 pass for z > 0.75 for π⁺ from proton from KLT experiment at five (x, Q²) points, over 30 PAC days of running. [Rates are very low at high z].
- Therefore, making highest *z* central value of 0.67.

Selection of *P*^{*t*} scans

- Due to very high rates at small angles, make default θ_{pq} (angle between pion and q-vector) 2 degrees: provides about 180 deg. coverage in φ*.
- For 3 settings, can also use θ_{pq} = -1 deg to get full φ* coverage at P_t < 0.3 GeV.</p>
- For one setting, can extend θ_{pq} out to 12 degrees to cover up to $P_t = 0.7$ GeV, but with limited ϕ^* coverage

Overview of Production running

Х	Q^2	E(pass)	Z	θ_{pq}	<i>A</i> > 1
0.16	1.6	3,4	.5	2	no
0.22	2.2	3,4	.5	2	no
0.25	3.3	4,5	.36,.5,.67	2	π^+ (all), π^-
0.25	3.3	4,5	.5	5.2, 8.5, 11.7	π^+ only
0.25	3.3	5	.5,. <mark>6</mark> 7	-0.8	yes
0.31	3.1	3,4,5	.5	2	π^+ only
0.31	3.1	5	.5	-1	π^+ only
0.44	4.4	3,4,5	52	2	yes yes
0.44	4.4	3,4,5	.40,67	2	no
0.44	4.4	5	.52	-2, 0	yes
0.44	4.4	5	.40, .67	-2, 0	no

Beam currents, running time

- maximum current at 3, 4, and 5 pass will be limited to about 56, 42, and 34 µA respectively due to expected load from Hall A.
- Also need to keep singles rates in SHMS below 900 kHz to avoid big corrections.
- Also keep ratio of accidental to real coincidences below 1 if possible.
- Optimize statistical error by running each setting according to square root of the rate, rather for a fixed number of events.
- This allows for measurements of the $cos(\phi)$ and $cos(2\phi)$ terms at 5 pass, where the rates are the highest.
- These results can be used to determine cos(\u03c6) and cos(2\u03c6) contributions at lower beam energies, where rates are lower.

	Overview of Production running π^- on proton														
Ε	X	Q^2	Z	θ_{pq}	I (μ A)	coin/hr	Ā/R	Hrs	K-counts						
6.5	0.16	1.6	0.50	2.0	22.8	4.4	1.8	7.2	31.4						
8.6	0.16	1.6	0.50	2.0	34.9	80.9	2.0	2.0	161.8						
6.5	0.22	2.2	0.50	2.0	29.3	2.7	1.8	9.1	24.8						
8.6	0.22	2.2	0.50	2.0	42.0	48.8	1.5	2.1	104.7						
8.6	0.25	3.3	0.36	2.0	16.9	1.8	1.3	10.0	18.2						
10.7	0.25	3.3	0.36	2.0	25.8	21.3	1.4	3.2	69.3						
8.6	0.25	3.3	0.50	2.0	37.0	4.4	1.1	7.1	31.5						
10.7	0.25	3.3	0.50	2.0	34.0	31.1	0.6	2.7	83.6						
8.6	0.25	3.3	0.67	2.0	42.0	3.8	0.4	7.7	29.4						
10.7	0.25	3.3	0.67	2.0	34.0	23.8	0.2	3.1	73.2						
8.6	0.25	3.3	0.50	5.2	42.0	3.2	0.5	8.4	26.9						
10.7	0.25	3.3	0.50	5.2	34.0	20.0	0.2	3.4	67.1						
8.6	0.25	3.3	0.50	8.5	42.0	1.5	0.3	10.0	14.5						
10.7	0.25	3.3	0.50	8.5	34.0	9.0	0.1	5.0	45.1						
8.6	0.25	3.3	0.50	11.7	42.0	0.4	0.2	10.0	3.6						
10.7	0.25	3.3	0.50	11.7	34.0	2.2	0.1	10.0	22.1						
10.7	0.25	3.3	0.50	-0.8	23.4	23.4	1.1	3.1	72.6						
10.7	0.25	3.3	0.67	-0.8	34.0	27.3	0.6	2.9	78.4						

	Overview of Production running (continued)														
Ε	X	Q^2	Z	θ_{pq}	I (μ A)	coin/hr	A/R	Hrs	K-counts						
8.6	0.25	3.3	0.50	11.7	42.0	0.4	0.2	10.0	3.6						
10.7	0.25	3.3	0.50	11.7	34.0	2.2	0.1	10.0	22.1						
10.7	0.25	3.3	0.50	-0.8	23.4	23.4	1.1	3.1	72.6						
10.7	0.25	3.3	0.67	-0.8	34.0	27.3	0.6	2.9	78.4						
6.5	0.31	3.1	0.50	2.0	40.4	1.6	1.7	10.0	16.4						
8.6	0.31	3.1	0.50	2.0	42.0	21.2	0.9	3.3	69.1						
10.7	0.31	3.1	0.50	2.0	34.0	64.4	0.5	2.0	128.8						
10.7	0.31	3.1	0.50	-1.0	34.0	66.2	1.3	2.0	132.3						
6.5	0.44	4.4	0.40	2.0	32.6	0.4	2.0	10.0	4.3						
8.6	0.44	4.4	0.40	2.0	42.0	6.6	1.1	5.8	38.7						
10.7	0.44	4.4	0.40	2.0	34.0	20.1	0.6	3.3	67.2						
6.5	0.44	4.4	0.52	2.0	56.0	0.8	1.4	10.0	7.6						
8.6	0.44	4.4	0.52	2.0	42.0	6.8	0.4	5.8	39.1						
10.7	0.44	4.4	0.52	2.0	34.0	20.5	0.2	3.3	67.9						

Overview of Production running (continued)

E	X	Q^2	Z	θ_{pq}	I (μ A)	coin/hr	A/R	Hrs	K-counts
6.5	0.44	4.4	0.52	2.0	56.0	0.8	1.4	10.0	7.6
8.6	0.44	4.4	0.52	2.0	42.0	6.8	0.4	5.8	39.1
10.7	0.44	4.4	0.52	2.0	34.0	20.5	0.2	3.3	67.9
6.5	0.44	4.4	0.67	2.0	56.0	0.6	0.4	10.0	6.3
8.6	0.44	4.4	0.67	2.0	42.0	5.7	0.1	6.3	35.7
10.7	0.44	4.4	0.67	2.0	34.0	17.1	0.0	3.6	62.0
10.7	0.44	4.4	0.40	-2.0	34.0	20.1	1.8	3.3	67.2
10.7	0.44	4.4	0.40	0.0	34.0	21.1	1.0	3.3	69.0
10.7	0.44	4.4	0.52	0.0	34.0	22.0	0.4	3.2	70.4
10.7	0.44	4.4	0.52	-2.0	34.0	20.5	0.8	3.3	67.9
10.7	0.44	4.4	0.67	0.0	34.0	18.7	0.1	3.5	64.9
10.7	0.44	4.4	0.67	-2.0	34.0	17.1	0.3	3.6	62.0
total (c	ay): 8	.4 (all), [2.3	(3-pas	s), 3.2 (4-pass),	2.8 (5	-pass)]

Electron kinematics and rates

							<i>e</i> -	π^{-}	K-	
X	Q^2	W	E	ϵ	E'	θ_{e}	kHz	kHz	kHz	π/e
0.16	1.6	3.05	6.5	0.32	1.2	26.5	2.	484.	16.	212.4
0.16	1.6	3.05	8.6	0.65	3.3	13.7	27.	231.	17.	8.4
0.22	2.2	2.95	6.5	0.31	1.1	31.6	1.	235.	7.	215.1
0.22	2.2	2.95	8.6	0.64	3.3	16.1	14.	88.	6.	6.4
0.25	3.3	3.28	8.6	0.32	1.6	28.7	1.	129.	6.	150.5
0.25	3.3	3.28	10.7	0.59	3.7	16.7	7.	45.	4.	6.9
0.25	3.3	3.28	8.6	0.32	1.6	28.7	1.	129.	6.	150.5
0.25	3.3	3.28	10.7	0.59	3.7	16.7	7.	45.	4.	6.9
0.25	3.3	3.28	8.6	0.32	1.6	28.7	1.	129.	6.	150.5
0.25	3.3	3.28	10.7	0.59	3.7	16.7	7.	45.	4.	6.9
0.25	3.3	3.28	8.6	0.32	1.6	28.7	1.	129.	6.	150.5
0.25	3.3	3.28	10.7	0.59	3.7	16.7	7.	45.	4.	6.9
0.25	3.3	3.28	8.6	0.32	1.6	28.7	1.	129.	6.	150.5
0.25	3.3	3.28	10.7	0.59	3.7	16.7	7.	45.	4.	6.9
0.25	3.3	3.28	8.6	0.32	1.6	28.7	1.	129.	6.	150.5
0.25	3.3	3.28	10.7	0.59	3.7	16.7	7.	45.	4.	6.9

Electron kinematics and rates (continued)

							<i>e</i> -	π^{-}	K-	
X	Q^2	W	E	ϵ	E'	θ_{e}	kHz	kHz	kHz	π/e
0.31	3.1	2.79	8.6	0.63	3.3	19.2	6.	24.	2.	4.1
0.31	3.1	2.79	10.7	0.78	5.4	13.4	21.	11.	1.	0.5
0.44	4.4	2.55	6.5	0.28	1.2	44.7	0.	23.	0.	146.7
0.44	4.4	2.55	8.6	0.62	3.3	22.8	2.	4.	0.	2.2
0.44	4.4	2.55	10.7	0.77	5.4	15.9	7.	2.	0.	0.2
0.44	4.4	2.55	6.5	0.28	1.2	44.7	0.	23.	0.	146.7
0.44	4.4	2.55	8.6	0.62	3.3	22.8	2.	4.	0.	2.2
0.44	4.4	2.55	10.7	0.77	5.4	15.9	7.	2.	0.	0.2
0.44	4.4	2.55	6.5	0.28	1.2	44.7	0.	23.	0.	146.7
0.44	4.4	2.55	8.6	0.62	3.3	22.8	2.	4.	0.	2.2
0.44	4.4	2.55	10.7	0.77	5.4	15.9	7.	2.	0.	0.2
	1	1				I			I I	

Pion kinematics and rates													
X	Q^2	Z	P_t	P_{π}	$ heta_{\pi}$	3/4 (kHz)	$oldsymbol{e}/\pi$						
0.16	1.6	0.50	0.10	2.74	7.5	900	0.14						
0.16	1.6	0.50	0.10	2.74	10.1	900	0.04						
0.22	2.2	0.50	0.10	2.77	8.2	900	0.14						
0.22	2.2	0.50	0.10	2.77	11.4	709	0.04						
0.25	3.3	0.36	0.09	2.62	7.9	900	0.04						
0.25	3.3	0.36	0.09	2.62	10.3	900	0.02						
0.25	3.3	0.50	0.13	3.63	7.9	899	0.14						
0.25	3.3	0.50	0.13	3.63	10.3	437	0.06						
0.25	3.3	0.67	0.17	4.87	7.9	451	0.51						
0.25	3.3	0.67	0.17	4.87	10.3	123	0.27						
0.25	3.3	0.50	0.33	3.63	11.1	285	0.15						
0.25	3.3	0.50	0.33	3.63	13.5	115	0.07						
0.25	3.3	0.50	0.54	3.63	14.4	71	0.20						
0.25	3.3	0.50	0.54	3.63	16.8	27	0.12						
0.25	3.3	0.50	0.74	3.63	17.6	17	0.31						
0.25	3.3	0.50	0.74	3.63	20.0	6	0.20						
0.25	3.3	0.50	05	3.63	7.5	899	0.06						
0.25	3.3	0.67	07	4.87	7.5	523	0.21						

Pion kinematics and rates (continued)													
X	Q^2	Z	P_t	P_{π}	θ_{π}	3/4 (kHz)	e/π						
0.31	3.1	0.50	0.10	2.81	13.0	409	0.04						
0.31	3.1	0.50	0.10	2.81	14.7	242	0.02						
0.31	3.1	0.50	05	2.81	11.7	642	0.02						
0.44	4.4	0.40	0.08	2.29	10.3	899	0.06						
0.44	4.4	0.40	0.08	2.29	14.8	494	0.02						
0.44	4.4	0.40	0.08	2.29	16.9	280	0.01						
0.44	4.4	0.52	0.10	2.98	10.3	743	0.18						
0.44	4.4	0.52	0.10	2.98	14.8	171	0.07						
0.44	4.4	0.52	0.10	2.98	16.9	86	0.03						
0.44	4.4	0.67	0.13	3.84	10.3	369	0.57						
0.44	4.4	0.67	0.13	3.84	14.8	45	0.29						
0.44	4.4	0.67	0.13	3.84	16.9	18	0.17						
0.44	4.4	0.40	08	2.29	12.9	821	0.01						
0.44	4.4	0.40	0.00	2.29	14.9	485	0.01						
0.44	4.4	0.52	0.00	2.98	14.9	178	0.03						
0.44	4.4	0.52	10	2.98	12.9	359	0.02						
0.44	4.4	0.67	0.00	3.84	14.9	46	0.12						
0.44	4.4	0.67	13	3.84	12.9	115	0.09						

Projections from Dave Gaskell for this plan: R

Projections from Dave Gaskell for this plan: R_A-R_H

Background and Calibration Runs

- Run Dummy target for 15% of time for π⁻ on proton target at every setting. ¡2;
- Reverse HMS polarity for pair-symmetric background runs for the low-e pass of each setting, for 10% of the time used for electron running. ¡3-¿
- Run for 25% of time with half of the nominal current.
- Run with HMS ELREAL trigger (pre-scaled if need be) at every setting for 15 minutes (unless rates low enough that ELREAL can be used for production running already) to check DIS xsection
- HEEP runs at every beam energy
- heEP scan of SHMS from -16 < δ < 40% to extend useful acceptance range.</p>

Summary

- Run plan nearly completed
- Run coordinators list available
- Preparation of online analysis ongoing
- Experiment start in late May 2025 at present
- Transformation to shift plan next
- Opening schedule for shift sign up next

Backup

HMS + SHMS (or NPS) Accessible Phase Space for SIDIS

Original Kinematic Plan: z dependence at x=0.2, Q²=2.0

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(2, 2, 2, 0)											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	х	Q^2	W^2	\mathbf{Z}	$W^{\prime 2}$	\mathbf{E}	θ_{e}	q_{γ}	$ heta_{\gamma}$	ϵ	Eo	R_{DIS}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(GeV^2)	(GeV^2)		(GeV^2)	(GeV)	(deg)	(GeV)	(deg)		(GeV)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20	2.00	8.88	0.30	6.48	1.271	28.26	5.513	6.27	0.34	6.6	0.27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.30	6.48	3.471	14.70	5.513	9.19	0.66	8.8	0.27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.30	6.48	5.671	10.27	5.513	10.57	0.80	11.0	0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20	2.00	8.88	0.40	5.68	1.271	28.26	5.513	6.27	0.34	6.6	0.27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.40	5.68	3.471	14.70	5.513	9.19	0.66	8.8	0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.40	5.68	5.671	10.27	5.513	10.57	0.80	11.0	0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20	2.00	8.88	0.50	4.88	1.271	28.26	5.513	6.27	0.34	6.6	0.27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.50	4.88	3.471	14.70	5.513	9.19	0.66	8.8	0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.50	4.88	5.671	10.27	5.513	10.57	0.80	11.0	0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20	2.00	8.88	0.65	3.68	1.271	28.26	5.513	6.27	0.34	6.6	0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.65	3.68	3.471	14.70	5.513	9.19	0.66	8.8	0.27	
0.20 2.00 8.88 0.85 2.08 1.271 28.26 5.513 6.27 0.34 6.6 0.27 0.85 2.08 3.471 14.70 5.513 9.19 0.66 8.8 0.27 0.85 2.08 5.671 10.27 5.513 9.19 0.66 8.8 0.27				0.65	3.68	5.671	10.27	5.513	10.57	0.80	11.0	0.27	
0.20 2.00 8.88 0.85 2.08 1.271 28.26 5.513 6.27 0.34 6.6 0.27 0.85 2.08 3.471 14.70 5.513 9.19 0.66 8.8 0.27 0.85 2.08 5.671 10.27 5.513 10.57 0.80 11.0 0.27													
0.85 2.08 3.471 14.70 5.513 9.19 0.66 8.8 0.27 0.85 2.08 5.671 10.27 5.512 10.57 0.80 11.0 0.27	0.20	2.00	8.88	0.85	2.08	1.271	28.26	5.513	6.27	0.34	6.6	0.27	
				0.85	2.08	3.471	14.70	5.513	9.19	0.66	8.8	0.27	
0.05 2.06 5.071 10.27 5.513 10.57 0.80 11.0 0.27				0.85	2.08	5.671	10.27	5.513	10.57	0.80	11.0	0.27	

TABLE I. L/T Separations as a function of z at $(x, Q^2) = (0.20, 2.00)$

Original Kinematic Plan: z dependence at x=0.4, Q²=4.0

			-					-	-		
x	Q^2	W^2	z	$W^{\prime 2}$	E'	θ_e	q_{γ}	θ_{γ}	ε	Eo	R _{DIS}
	(GeV^2)	(GeV^2)		(GeV^2)	(GeV)	(deg)	(GeV)	(deg)		(GeV)	
0.40	4.00	6.88	0.30	5.08	1.271	40.40	5.692	8.32	0.31	6.6	0.19
			0.30	5.08	3.471	20.85	5.692	12.54	0.65	8.8	0.19
			0.30	5.08	5.671	14.55	5.692	14.49	0.79	11.0	0.19
0.40	4.00	6.88	0.40	4.48	1.271	40.40	5.692	8.32	0.31	6.6	0.19
			0.40	4.48	3.471	20.85	5.692	12.54	0.65	8.8	0.19
			0.40	4.48	5.671	14.55	5.692	14.49	0.79	11.0	0.19
0.40	4.00	6.88	0.50	3.88	1.271	40.40	5.692	8.32	0.31	6.6	0.19
			0.50	3.88	3.471	20.85	5.692	12.54	0.65	8.8	0.19
			0.50	3.88	5.671	14.55	5.692	14.49	0.79	11.0	0.19
0.40	4.00	6.88	0.65	2.98	1.271	40.40	5.692	8.32	0.31	6.6	0.19
			0.65	2.98	3.471	20.85	5.692	12.54	0.65	8.8	0.19
			0.65	2.98	5.671	14.55	5.692	14.49	0.79	11.0	0.19
0.40	4.00	6.88	0.85	1.78	1.271	40.40	5.692	8.32	0.31	6.6	0.19
			0.85	1.78	3.471	20.85	5.692	12.54	0.65	8.8	0.19
			0.85	1.78	5.671	14.55	5.692	14.49	0.79	11.0	0.19

TABLE II. L/T Separations as a function of z at $(x, Q^2) = (0.40, 4.00)$

Original Kinematic Plan: p_T^2 dependence at x=0.3, Q²=3.0

x	Q^2	W^2	\mathbf{Z}	$W^{\prime 2}$	E'	θ_e	q_{γ}	θ_{γ}	ϵ	Eo	\mathbf{R}_{DIS}	θ_{pq}
	(GeV^2)	(GeV^2)		(GeV^2)	(GeV)	(deg)	(GeV)	(deg)		(GeV)		(deg)
0.30	3.00	7.88	0.50	4.380	1.271	34.80	5.603	7.44	0.33	6.6	0.19	-2.0
			0.50	4.380	3.471	18.03	5.603	11.05	0.66	8.8		
			0.50	4.380	5.671	12.59	5.603	12.75	0.80	11.0		
0.30	3.00	7.88	0.50	4.380	1.271	34.80	5.603	7.44	0.33	6.6	0.19	0.0
			0.50	4.380	3.471	18.03	5.603	11.05	0.66	8.8		
			0.50	4.380	5.671	12.59	5.603	12.75	0.80	11.0		
0.30	3.00	7.88	0.50	4.380	1.271	34.80	5.603	7.44	0.33	6.6	0.19	5.0
			0.50	4.380	3.471	18.03	5.603	11.05	0.66	8.8		
			0.50	4.380	5.671	12.59	5.603	12.75	0.80	11.0		
0.30	3.00	7.88	0.50	4.380	1.271	34.80	5.603	7.44	0.33	6.6	0.19	10.0
			0.50	4.380	3.471	18.03	5.603	11.05	0.66	8.8		
			0.50	4.380	5.671	12.59	5.603	12.75	0.80	11.0		
0.30	3.00	7.88	0.50	4.380	1.271	34.80	5.603	7.44	0.33	6.6	0.19	15.0
			0.50	4.380	3.471	18.03	5.603	11.05	0.66	8.8		
			0.50	4.380	5.671	12.59	5.603	12.75	0.80	11.0		
0.30	3.00	7 88	0.50	4 380	1 271	34 80	5 603	7 44	0.33	6.6	0.19	20.0
0.00	0.00	1.00	0.50	4.380	3.471	18.03	5.603	11.05	0.66	8.8	0.10	20.0
			0.50	4.380	5.671	12.59	5.603	12.75	0.80	11.0		
			0.50	4.380	5.671	12.59	5.603	12.75	0.80	11.0		

TABLE III. L/T Separations as a function of p_T^2 at $(x, Q^2) = (0.30, 3.00)$

Original Kinematic Plan: Q² dependence at z=0.5

x	Q^2	W^2	Z	W'^2	E'	θ_e	q_{γ}	θ_{γ}	ε	Eo	R _{DIS}
	(GeV^2)	(GeV^2)		(GeV^2)	(GeV)	(deg)	(GeV)	(deg)		(GeV)	
0.15	1.50	9.38	0.50	5.130	1.271	24.41	5.468	5.51	0.35	6.6	0.35
			0.50	5.130	3.471	12.72	5.468	8.04	0.67	8.8	0.35
0.50	5.00	5.88	0.50	3.380	1.271	45.41	5.779	9.01	0.30	6.6	0.12
			0.50	3.380	3.471	23.34	5.779	13.77	0.64	8.8	0.12
			0.50	3.380	5.671	16.28	5.779	15.96	0.79	11.0	0.12

TABLE IV. Additional L/T Separations as a function of Q^2 at variable (x, Q^2)

Phl Coverage of SIDIS experiments

Kinematic coverage in (x,Q²)

Solid circles are from pt-SIDIS, open circles CSV SIDIS CLAS coverage extends to lower x and lower Q²

each circle has 10,000 to 1000,000 events

Detailed Kinematics

	X	Q^2	z	$ heta_{pq}$	Targets	E_{beam}	ϵ
E12-06-104:		(GeV^2)		(degrees)		(GeV)	
	0.2	2.0	0.3, 0.4, 0.5, 0.65, 0.85	0.0	LH2,LD2,C,Cu	6.6	0.34
Data for π + and			0.3, 0.4, 0.5, 0.65, 0.85	0.0	LH2,LD2,C,Cu	8.8	0.66
π from proton			0.3, 0.4, 0.5, 0.65, 0.85	0.0	LH2,LD2,C,Cu	11.0	0.80
n- nom proton	0.4	4.0	0.3, 0.4, 0.5 , 0.65, 0.85	0.0	LH2,C,Cu	6.6	0.31
at all settings			0.3, 0.4, 0.5 , 0.65, 0.85	0.0	LH2, C, Cu	8.8	0.65
			0.3, 0.4, 0.5 , 0.65, 0.85	0.0	LH2, C, Cu	11.0	0.79
Data from	0.3	3.0	0.5	-2.0, 0.0, 5.0, 10.0, 15.0, 20.0	LH2	6.6	0.33
proton and			0.5	-2.0, 0.0, 5.0, 10.0, 15.0, 20.0	LH2	8.8	0.66
deuteron at			0.5	-2.0, 0.0, 5.0, 10.0, 15.0, 20.0	LH2	11.0	0.88
x=0.2	0.15	1.5	0.5	0.0	LH2	6.6	0.35
			0.5	0.0	LH2	8.8	0.67
	0.5	5.0	0.5	0.0	LH2, C,Cu	6.6	0.30
			0.5	0.0	LH2, C, Cu	8.8	0.64
			0.5	0.0	LH2, $\mathbf{C}, \mathbf{C}\mathbf{u}$	11.0	0.79

This experiment:

Bold = kinematic settings for measurements with C and Cu targets (π + only)

Bold, red = kinematic settings for measurements with C and Cu targets (π + and π -)

Detailed Kinematics

	X	Q^2	z	$ heta_{pq}$	Targets	E_{beam}	ϵ
E12-06-104:		(GeV^2)		(degrees)		(GeV)	
	0.2	2.0	0.3, 0.4, 0.5, 0.65, 0.85	0.0	LH2,LD2,C,Cu	6.6	0.34
Data for π + and			0.3, 0.4, 0.5, 0.65, 0.85	0.0	LH2,LD2,C,Cu	8.8	0.66
π from proton			0.3, 0.4, 0.5, 0.65, 0.85	0.0	LH2,LD2,C,Cu	11.0	0.80
	0.4	4.0	0.3, 0.4, 0.5 , 0.65, 0.85	0.0	LH2,C,Cu	6.6	0.31
at all settings			0.3, 0.4, 0.5 , 0.65, 0.85	0.0	LH2, C, Cu	8.8	0.65
			0.3, 0.4, 0.5 , 0.65, 0.85	0.0	LH2, C, Cu	11.0	0.79
Data from	0.3	3.0	0.5	-2.0, 0.0, 5.0, 10.0, 15.0, 20.0	LH2	6.6	0.33
proton and			0.5	-2.0, 0.0, 5.0, 10.0, 15.0, 20.0	LH2	8.8	0.66
deuteron at			0.5	-2.0, 0.0, 5.0, 10.0, 15.0, 20.0	LH2	11.0	0.88
x=0.2	0.15	1.5	0.5	0.0	LH2	6.6	0.35
			0.5	0.0	LH2	8.8	0.67
	0.5	5.0	0.5	0.0	LH2, C,Cu	6.6	0.30
			0.5	0.0	LH2, \mathbf{C}, \mathbf{Cu}	8.8	0.64
			0.5	0.0	LH2, C, Cu	11.0	0.79

Goals:

1. Measure nuclear dependence of R_{SIDIS} for range of x at fixed z

 \rightarrow Low x: no or small nuclear effects (inclusive), Large x: EMC region

- 2. Measurement for range of z for at least one x
- 3. Both π + and π for (part of) z-scan
- 4. Multiple values of A to explore nuclear dependence