

NPS RG1-a Overview

Supported by NSF grant PHY2309976 Casey Morean 1/13/2024

Hall C and the Neutral Particle Spectrometer

- Hall C is for precision measurements
- Removal of HB on SHMS carriage, straight shot into <u>NPS</u>
- Coincidence between NPS and well-characterized HMS
- Small angle, precision cross-sections, LT separation, high luminosity

Hall C and the Neutral Particle Spectrometer

- Hall C is for precision measurements
- Removal of HB on SHMS carriage, straight shot into NPS
- Coincidence between NPS and well-characterized HMS
- Small angle, precision cross-sections, LT separation, high luminosity

Small Angle Program of NPS Collaboration (RG1a)

- Deeply Virtual Compton Scattering off the proton
- DVCS off the neutron
- Deeply Virtual Meson Production (neutral pions)
- Semi-Inclusive Deep Inelastic Scattering (SIDIS) with neutral pions

E12-13-010	E12-13-007	E12-22-006	E12-23-014
65 PAC days	25 PAC days*	44 PAC days	+7 PAC days

- 94 PAC days total!
- Large acceptance of the NPS and unique trigger allows multiple processes to be measured simultaneously

Proton Structure and DVCS

- Nucleon form factors accessed via elastic scattering
- Parton distribution functions accessed via DIS
- DVCS is the simplest probe of GPDs
- LT Separation

 $\sigma(ep \rightarrow ep\gamma) = |DVCS|^2 + |BH|^2 + interference$

DVCS off the Neutron

- Subtraction of pi0 background
- ~2-12x better separation of nDVCS and dDVCS
- Flavor dependence of nucleon GPDs
- Azimuthal, beam, and helicity dependence of cross-section

$$D(e, e'\gamma)X = d(e, e'\gamma)d + n(e, e'\gamma)n + p(e, e'\gamma)p,$$

Separated by missing mass E12-13-010

$$(\Delta M_X^2 = t(1 - M_N/M_d) \approx t/2)$$

Proton Structure and DVCS

- Nucleon form factors accessed via elastic scattering
- Parton distribution functions accessed via DIS
- DVCS is the simplest probe of GPDs
- LT Separation

Exclusive neutral pion

- electroproduction
- Previous experiment in Hall A and CLAS show evidence of transversely polarized virtual photons
- LT separation off proton and deuteron with a large separation in epsilon (three epsilon points)
- Handbag factorization tells us the amplitude for transversely polarized virtual photons are suppressed by 1/Q

M. Defurne Phys. Rev. Lett. 117, 262001 (2016)

Small Angle Program of NPS Collaboration (RG1a)

Kinematic	Beam	Coulomb Goal	LH2 % of	LD2 % of
KinC v36 1	7 ass	12	110 33%	134 08%
KinC x36 2	4	1.1	37 12%	20.67%
KinC x36 2'	4	1.1	44 78%	25.22%
KinC x36 2"	4	1.1	34 77%	25.22%
KinC x36_3	5	0.6	107 21%	110 06%
KinC x36 4	4	27	36 67%	10 16%
KinC x36 5	5	1.1	121 88%	88 58%
KinC x36 5'	5	0.5	137 28%	106.98%
KinC x36_6	5	4.3	131.20%	36.85%
KinC x50 0a	3	4.5	55 18%	48 35%
KinC x50 0b	2	2	40.72%	40.33%
KinC x50 1	3	1.0	40.75%	41.35% 91.01%
KinC x50 1'	4	1.5	04 949/	90.47%
KinC x50 2	4	2.05	424 220/	80.67%
KinC x50_2	5	2.05	121.33%	00.40%
KinC x50_2	5	0.57	109.81%	90.19%
KinC_x50_2	5	0.61	94.90%	104.86%
Kinc_x50_3	5	4.85	117.56%	86.04%
KinC_x50_3	5	0.68	80.86%	119.14%
KINC_X50_3	5	0.7	88.31%	111.69%
KinC_x60_1	3	10	32.48%	29.36%
KinC_x60_2	4	4.75	24.59%	22.70%
KinC_x60_2'	4	4.75	18.67%	20.05%
KinC_x60_3	5	3.17	112.50%	99.41%
KinC_x60_3'	5	1.26	85.76%	114.24%
KinC_x60_3a	5	1.83	57.62%	82.17%
KinC_x60_3b	5	1.83	83.94%	72.65%
KinC_x60_4a	5	3.88	85.56%	77.40%
KinC_x60_4b	5	3.88	83.39%	77.13%
KinC_x25_1	3	0.5	53.14%	34.10%
KinC_x25_3	4	2.6	27.73%	18.02%
KinC_x25_4	5	2.6	41.78%	33.59%

Small Angle Program of NPS Collaboration (RG1a)

S. Niccolai E12-11-003 proposal

0

X_{Bi}

Semi-inclusive deep inelastic scattering

- SIDIS cross sections depend on the transverse momentum of the hadron $Ph \perp$.
 - Arises from intrinsic transverse momentum (kT) of the parton and the transverse momentum (pT) of the fragmentation process
- Neutral pions are a good test and consistency check of flavor assumptions in extraction of TMDs with TM fragmentation
 - With a pT and kT dependence, a convolution is necessary to obtain $Ph \perp$

Small Angle Program of NPS Collaboration (RG1a)

Kinematic Setting	Beam Pass	Coulomb Goal Per Target	LH2 % of Goal	LD2 % of Goal
KinC_x36_1	3	1.2	119.33%	134.08%
KinC_x36_2	4	1.1	37.12%	20.67%
KinC_x36_2'	4	1.1	44.78%	25.22%
KinC_x36_2"	4	1.1	34.77%	25.17%
KinC_x36_3	5	0.6	107.21%	119.06%
KinC_x36_4	4	2.7	36.67%	19.16%
KinC_x36_5	5	1.4	121.88%	88.58%
KinC_x36_5'	5	0.5	137.28%	106.98%
KinC_x36_6	5	4.3	43.95%	36.85%
KinC_x50_0a	3	2	55.18%	48.35%
KinC_x50_0b	3	2	40.73%	47.39%
KinC_x50_1	4	1.9	100.14%	81.01%
KinC_x50_1'	4	1.9	94.84%	80.17%
KinC_x50_2	5	2.05	121.33%	89.67%
KinC_x50_2'	5	0.57	109.81%	90.19%
KinC_x50_2"	5	0.61	94.90%	104.86%
KinC_x50_3	5	4.85	117.56%	86.04%
KinC_x50_3'	5	0.68	80.86%	119.14%
KinC_x50_3"	5	0.7	88.31%	111.69%
KinC_x60_1	3	10	32.48%	29.36%
KinC_x60_2	4	4.75	24.59%	22.70%
KinC_x60_2'	4	4.75	18.67%	20.05%
KinC_x60_3	5	3.17	112.50%	99.41%
KinC_x60_3'	5	1.26	85.76%	114.24%
KinC_x60_3a	5	1.83	57.62%	82.17%
KinC_x60_3b	5	1.83	83.94%	72.65%
KinC_x60_4a	5	3.88	85.56%	77.40%
KinC_x60_4b	5	3.88	83.39%	77.13%
KinC_x25_1	3	0.5	53.14%	34.10%
KinC_x25_3	4	2.6	27.73%	18.02%
KinC_x25_4	5	2.6	41.78%	33.59%

NPS Calorimeter

- 1080 PbWO4 blocks
- High energy resolution
- High light yield
- RadHard
- Temperature controlled frame
 - Hamamatsu 4125 PMTs
- HV divider and amplifier to reduced HV requirements
- LED system for gain monitoring
- HV, LV, and LED signals distributed to an entire column through distribution board

NPS Calorimeter

- 1080 PbWO4 blocks
- High energy resolution
- High light yield
- RadHard
- Temperature controlled frame
 - Hamamatsu 4125 PMTs
- HV divider and amplifier to reduced HV requirements
- LED system for gain monitoring
- HV, LV, and LED signals distributed to an entire column through distribution board

NPS DAQ/Trigger Setup

NPS DAQ/Trigger Setup

- Trigger pedestal is the same parameter that would be calculated for the readout data.
- Trigger gain parameter normally used to scale ADC -> MeV
- Both pedestal and gain require calibration to determine parameters.

Energy and Timing resolution

- Beam bunch time, HMS coincidence time
- Cluster coincidence time
- Energy resolution of NPS

Brief Analysis Update

Pass1 complete

HMS detector calibrations

NPS pi0 calibration on ~half the kinematics

Elastic waveform analysis completed

Optics matrix element update

Target luminosity discrepancy

Initial data-to-MC comparisons of SIDIS yield

Talk By Mr. Hao Huang

Talk By Wassim Hamdi

Next talk By Christine Ploen

Next talk By Mark Mathison

Next talk By Josh Crafts

NPS Refurbishment

- Active components in the Keysight card for temperature sensing replaced / moved
- Check resistance chain on dividers (Fernando's group)
 - Limited to 850V due to resistor chain, can it be reworked for 1500V?
- PMTs first few columns
 - Remove some from first few columns, test to failure, and get spares
 - check connection to crystal for dried optical connection
- Cable management (On Steven L. list)
- Resolve issue with connectors on calorimeter side (electronics group)
 - possibly have an intermediate patch panel
 - replace connectors?
- Optional: Shielding to shield strips on boards to reduce noise between boards
- Optional refurbishment: Crystals
 - may try to bleach is all is disassembled anyway

NPS Refurbishment for Future Experiments

- Active components in the Keysight card for temperature sensing - replaced / moved
- Check resistance chain on dividers (Fernando's group)
 - Limited to 850V due to resistor chain, can it be reworked for 1500V?
- PMTs first few columns
 - Remove some from first few columns, test to failure, and get spares
 - check connection to crystal for dried optical connection
- Cable management (On Steven L. list)
- Resolve issue with connectors on calorimeter side (electronics group)
 - o possibly have an intermediate patch panel
 - replace connectors?
- Optional: Shielding to shield strips on boards to reduce noise between boards
- Optional refurbishment: Crystals
 - may try to bleach is all is disassembled anyway

Thank you Questions?

