OLD DOMINION UNIVERSITY

Exclusive Reactions in NPS

Exclusive Channels, Experimental Set up, Challenges, and Success

Christine Ploen Support from DOE DE-FG02-96ER40960

January 13, 2025

NPS Exclusive Processes

Jefferson Lab

NPS Overview from September 2023 - May 2024 (RG1a)

е

NPS

- Precision coincidence cross section measurements of neutral particles (γ and π^0)
- Uses existing SHMS carriage to allow remote rotation
- Angle reach between 5.5 and 21 degrees
 - Production range 9.0 to 20.6 degrees

HMS

- Detects scattered *e*⁻
- Rotation to 11.7 degrees
- Excellent momentum resolution (0.1%)
- Momentum from 0.5 -7.5 GeV/c

Beamline/Instrumentation

- Modified beam pipe
- 0.3Tm Sweep Magnet 1.5m from target (NPS)
 - Vertical bend, reducing charged background

Targets

• 10 cm Cryogenic LH2 or LD2

DAQ, CH, Computing $\rightarrow \mathcal{L} \sim 7.5 \cdot 10^{37} / (cm^2 s)$

LD2

or LH2

NPS Science Program: Exclusive Channels

- **E12-13-010**: Exclusive DVCS and π^0 Cross-Section Measurements
- **E12-13-007:** Semi-Inclusive π^0 Production
- **E12-22-006:** DVCS off the neutron with the NPS

NPS achieves precision coincidence cross section *measurements* of neutral particles (γ and π^0) by taking advantage of the well-understood HMS and SHMS, e⁻beam offering:

- fixed pivot
- precision kinematics ightarrow
- excellent detector shielding

These features offer excellent control over systematic uncertainties

 \rightarrow crucial for L/T separation

10 cm LH2 or LD2

E12-13-010 DVCS/ π^0 cross sections

Simplest process: $e + p \rightarrow e' + p + \gamma$ (DVCS)

E12-13-101 DVCS: complements and expands measurements in Hall A: **Scaling of the Compton Form Factor *** Rosenbluth-like separation of DVCS: $\sigma = |BH|^2 + \Re e[DVCS^{T}BH] + |DVCS|^2$ ~E³beam ~E²_{beam} **\therefore** L/T separation of π^0 production > Crucial for probing transversely GPDs

Jm [DVCS^TBH] is extracted from the *sin(Ø)* dependence of the **helicity-dependent** cross section

 $\mathcal{R}e, \mathcal{I}m \propto e^{-} charge^{3}$ Cross section terms \propto charge²

To extract the real part of the CFFs from DVCS, cross section measurements at **multiple beam energies** are needed $(DVCS^2 - \mathcal{R}e[DVCS^{\dagger}BH]$ separation)

NPS Installation

- Neutral particle detector made up of 1080 lead tungstate crystals (PbWO₄) in a 30x36 array.
- Temperature-controlled frame with gain monitoring and curing.
- Nearly streaming readout with deadtime-less digitizing electronics: JLab-developed Flash ADCs sample the entire pulse form for each crystal.

- Cantilevered platforms installed on SHMS carriage permits precise • and remote rotation of the detector from 5.5 degrees to 21 degrees.
- 0.3Tm sweeping magnet allows small angle settings needed for high • Q^2 measurements and much higher luminosity at larger angles.
- Rails on SHMS platform permit longitudinal calorimeter motion from • 3.0 to 9.5 m from target.

NPS Exclusive Processes

e Detection in the High Momentum Spectrometer

- NPS program pushes HMS to highest momentum yet: -6.667 GeV/c
 - Four new optics studies for precision reconstruction
- Small pt-to-pt uncertainties achievable for clean L/T separation
- Drift chambers for track reconstruction
- Fast trigger from scintillator planes
- Cerenkov detector and shower counter for e/π separation

Vacuum Vessel

• Coincidence Trigger between NPS photon detection and HMS electrons

Optics Reconstruction in the HMS

HMS Sieve Slit Schematic: 9x9 array of pinholes

New matrix elements for HMS P =

- -5.639 GeV/c,
- -5.878 GeV/c,
- -6.117 GeV/c,
- -6.667 GeV/c Highest P in **HMS history**

Sweeper magnet also studied \rightarrow So far, no evidence of fringe effects on HMS Optics

Goal: accurately reconstruct x'_{tar} , y_{tar} , y'_{tar} from the focal plane variables x_{fp} , x'_{fp} , y_{fp} , y'_{fp} , as well as x_{tar} Data Taking Procedure: Beam on carbon foil target with sieve slit in place, HMS momentum set

Sieve Slit data taken on **5 carbon foil positions**: +/-8 cm, +/- 3 cm, and 0 cm for excellent reconstruction throughout the extended target

NPS Exclusive Processes

Major improvements in reconstruction!

NPS Elastic Calibrations

Procedure:

- \blacktriangleright NPS is moved to 9.5 m with tech assistance
- HMS polarity switched to detect protons
- > NPS detects scattered electrons (magnet off)
- > 3 NPS angles to illuminate the whole calo

 \rightarrow We can precisely predict energy of scattered e⁻ from the measured proton in the HMS

 \rightarrow High Voltages of PMTs adjusted based on coefficients via chi² minimization

Reconstruct scattered electron via $e + p \rightarrow e_i' + p_i'$ $E_i = E_b + M_p - E_i^p$ E_{b} = beam energy M_p = mass of target proton E_i^p = energy of recoil proton

> e⁻beam LH2

During Run Period,

- 16 elastic calibrations performed \bullet
- results used to update the HV settings 6 times •
- •

Current Analysis:

Reference waveforms are selected from elastic data •

NPS Exclusive Processes

Analysis by H. Huang

NPS Run Period Challenges

Problem:

- Electronics issue discovered as we saw channels • become unstable and fail.
- Channels died soonest closest to beam.
- Radiation damage in the LV regulators on the base pre-amps caused instability in the LV power supply for all channels in a column.

Solution:

- Disabled columns as they became unstable.
- Bypass the regulators in the preamps to refurbish the bases during the winter SAD.

Original base

Refurbished base with regulators bypassed

NPS Exclusive Processes

Checking the application of optical grease (top) and reconnecting the distribution boards (bottom) during 2023-2024 Winter SAD

NPS Run Period Challenges

- Essentially defect-free CRYTUR crystals provided consistent light yield \bullet and fast time response (5,15 ns)
- However, radiation exposure is known to cause crystal darkening and • eventually reduces light transmission.
- Over time, we observed a shift in raw π^0 mass especially pronounced near calorimeter edges
- π^0 mass measurement calibrations were sufficient to adjust for gain shift, and the crystals did not require bleaching

NPS Calibration via π^{0} Mass Measurement

Reconstruct π^0 mass via $\pi^0 \rightarrow \gamma\gamma$	π^0 in
\rightarrow Adjust gain coefficients for each crystal after run period	
π^{o} Mass Measurements require:	s unts
 e⁻ beam on cryo target in production configuration 	Col
• At least 20k π^{0} events for calibration	2.5
 Depending on kinematic setting, from 0.5 hours to 3 hours of beam 	
time.	0
• Analysis requires \sim 3-5 iterations using minimization to achieve stability	2

NPS Exclusive Processes

nvariant mass after π^0 calibration

Analysis by H. Huang

<u>II</u>

NPS Preliminary Waveform Fittings

Waveform analysis is crucial for the best possible resolution

- Waveform fits extract pulse amplitude and time more accurately than using the online FADC peak analysis.
- A reference pulse shape is created from elastic data for each channel.
- A fit function is then created for each channel using spline interpolation between pulse samples and the reference shape.
- Waveform fitting of all data in progress for next 3-6 months.

Analysis by W. Hamdi

12

NPS Exclusivity Results – π^{0}

- π^0 Exclusivity: H(e, e' π^0)p extracted using missing mass technique: • $\gg M_{\chi}^{2} = (k + P_{p} - k' - q_{\gamma\gamma})^{2}$
- Analysis of *t*-dependence, ullet $\varphi_{q\pi}$ - dependence, and beam helicity dependence of exclusive yield to follow

Analysis by W. Hamdi

NPS Exclusivity Results – DVCS

- Exclusivity: $H(e,e'\gamma)p$ from $H(e,e'\gamma)X$
- DVCS events extracted using missing mass technique $\gg M_{x}^{2} = (k + P_{p} - k' - q_{v})^{2}$
- DVCS peaks clear after subtraction of π^0 contamination and accidentals $\succ \pi^0$ subtraction: sample of H(e,e' γ)X' γ events estimated from measured $H(e,e'\gamma \gamma)X'$

NPS Exclusive Processes

Analysis by W. Hamdi

Staff, Tech Team, NPS Collaboration – Thank you!

