Deuteron Electro-Disintegration Experiment (E12-10-003)

Hall C Winter Collaboration Meeting Jan 13-14 2025

Gema Villegas Florida International University

Pramila Pokhrel Catholic University of America

Ph.D. Advisor: Dr. Carlos Yero Catholic University of America

1. Motivation

1. Kinematics

1. SIMC/DATA Comparison

1. HMS Momentum Check

1. Summary

Motivation

- Ideal system to study NN potential.
- Study Deuteron at short ranges (< 1fm).
- Extract D(e,e'p)n cross-section beyond 500 MeV/c missing momentum at high/low Q2
- Extract momentum distributions (not an observable) from cross sections.

D(e,e'p)n Interactions

Meson-Exchange Currents (MEC)

Isobar Configurations (IC)

E12-10-003 H(e,e'p) Analysis: SIMC and Data Comparison

SIMC/DATA Comparison: CUTS APPLIED Missing Energy cut, Emcut<0.05 and >-0.05

SIMC/DATA Comparison: CUTS APPLIED SHMS Momentum Acceptance cut <22 and >-10

SIMC/DATA Comparison: CUTS APPLIED HMS Momentum Acceptance cut <10 and >-10

HMS Momentum Acceptance, δ

HMS Momentum Acceptance, δ

SIMC/DATA Comparison: CUTS APPLIED

20851

E12-10-003 H(e,e'p) Analysis: HMS Momentum Correction

Heep Analysis: HMS Momentum Corrections and Optimization

H(e,e'p) Elastics Kinematics Used In Optimization Procedure

Run #	HMS Momentum [GeV/c]	HMS angle [deg]	SHMS Momentum [GeV/c]	SHMS angle [deg]	SHMS Delta	HMS Delta Range
20841	3.499	33.344	8.55	14.153	Delta scan -8	
20846	3.145	35.750	8.55	12.940	Delta scan -4	
20851	2.783	38.549	8.55	11.705	Delta scan 0	
20858	2.417	41.812	8.55	10.435	Delta scan+4	
20861	2.048	45.667	8.55	9.125	Delta scan+8	13

20851

Correlation check

deltaPdata_fr vs xpfp

deltaPdata_fr vs ypfp

20846

deltaPdata_fr vs yfp

20858

deltaPdata_fr vs yfp

deltaPdata_fr vs xpfp

deltaPdata_fr vs ypfp

Asan x Asan y Rd Dev x

Before Correction

After Correction

APsimc-APdata [GeV]

HMS Momentum Before and After Correction

- ✤ HMS Momentum for Heep studied.
- SIMC/DATA Yields currently being studied

Deuteron Electro-disintegration Analysis Update

Gema P. Villegas Minyety Florida International University Pramila Pokhrel

Catholic University of America

Hall C Collaboration Meeting 14 January 2025

Brief Overview of D(e,e'p)n

1

Analysis Procedure

SIMC-H(e,e'p) Comparison

Hydrogen Elastics

Determining offsets • calculated (e-) momentum in angle then in momentum, based on SIMC calculated (proton) momentum $P_{f,z} = E_b - k_f \cos(\theta_e)$ comparison $P_{f,x} = -k_f \sin(\theta_e)$ Method was ullet $P_{f,calc}(E_b,\theta_e) = \sqrt{P_{f,x}^2 + P_{f,z}^2}$ developed by C. calculated (proton) angle Yero for Café $\theta_{p,calc}(E_b, \theta_e) = \tan^{-1} \frac{P_{f,x}}{P_{e_r}}$

measured (e-) momentum $k_{f,calc}(E_b,\theta_e) = \frac{M_p E_b}{M_p + 2E_b \sin^2(\theta_e/2)} \quad k_{f,meas} = P_0 \left(\frac{\delta_{shms}}{100} + 1\right) \qquad \vec{k}_f$ $k_f \cos(\theta_{e})$ measured (proton) momentum θ_{e} $P_{f,meas} = P_0 \left(\frac{\delta_{hms}}{100} + 1\right)$ \overrightarrow{P}_{A} $k_f \sin(\theta_e)$ E_{b} calculated-measured: $dk_f = k_{f,calc} - k_{f,meas}$ $dP_f = P_{f,calc} - P_{f,meas}$ $d\theta_p = \theta_{p,calc} - \theta_{p,meas}$

Definitions

Old Offset = 2.0e-04 [rad]

Old Offset = 2.0e-04 [rad]

New Offset = 2.81e-04 [rad]

Low Momentum Run (120 MeV) Yield Ratios

- Some calibrations done
- CaFe optics matrix

Incorporating MS Models in SIMC

Choose kinematic

• Create a grid

•

SUMMARY

• We are making progress: Optics, Offset

determination, Detector calibrations need fine tuning.

- Interested to see how changing the Laget cross section from SIMC will affect our yields.
- Looking forward to finishing analysis by the end of the year!

BONUS SLIDES

Previous Work

W. Boeglin and M. Sargsian. (2015). DOI

SIMC Weighted Yield Calculation:

$$Y^{Corr} = Y^{Uncorr} * \text{FullWeight}$$

Full Weight =
$$\frac{N_{norm} * \sigma_{weight} * Q_{charge} * \epsilon_{trk}^{(e)} * \epsilon_{trk}^{(h)} * L.T.}{\text{entries}}$$

Data Yield Calculation:

$$Y_{corr} = \frac{Y_{uncorr}.f_{rad}}{\epsilon_{etrk}.\epsilon_{htrk}.\epsilon_{tgt.Boil}.\epsilon_{pTrk}.\epsilon_{tLT}.Q_{tot}}$$

Other Kinematics Parameters

Four momentum transfer (Q2) Comparison For Delta 0 Run

Missing Energy (Em) Comparison For Delta 0 Run

SIMC/DATA Comparison

Run	BCM4A Charge(mC)	Total live time correction for trigger 6	HMS Tracking Efficiency	SHMS Tracking Efficiency	Data Yield
20851	47.2262	0.9993 +/-0.0002	0.9777+/-0.0005	0.9913 +/- 0.0003	1306
20846	112.7961	0.9997+/- 0.0001	0.9763+/- 0.0005	0.9924 +/- 0.0002	689
20841	240.4688	0.9997 +/- 0.0001	0.9755 +/- 0.0004	0.9928 +/- 0.0002	369.7
20858	26.7272	0.9983 +/- 0.004	0.9800 +/- 0.0004	0.9885 +/- 0.0006	2685
20861	12.5527	0.9980 +/-0.0006	0.9862 +/- 0.0003	0.9882 +/- 0.0003	5904

SIMC/DATA Comparison: CUTS APPLIED

SIMC/DATA Comparison: CUTS APPLIED

SIMC/DATA Comparison: CUTS APPLIED

Invariant mass, W

36

Invariant mass, W

20861

Invariant mass, W

Back-Up Slides

Old Offset = 2.0e-04 [rad]

Old Offset = 2.0e-04 [rad]

New Offset = 2.81e-04 [rad]

Low Momentum Run (120 MeV) Yield Ratios

