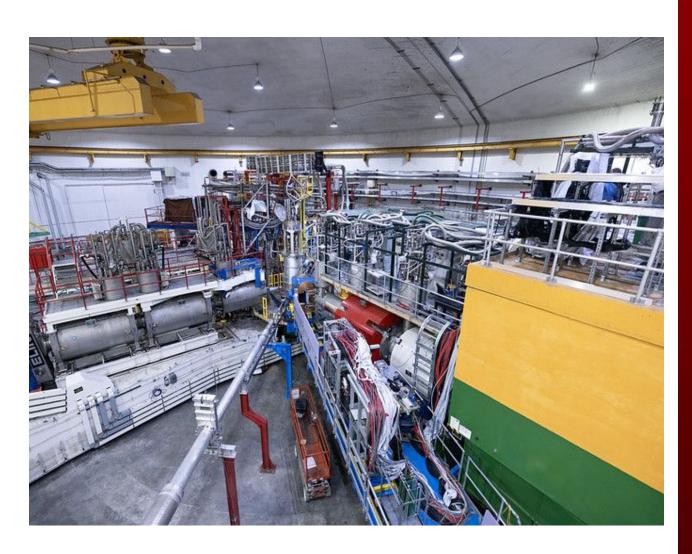


Semi-inclusive and Exclusive π^0 Electroproduction Physics with NPS

Joshua P. Crafts, Avnish Singh
The Catholic University of America

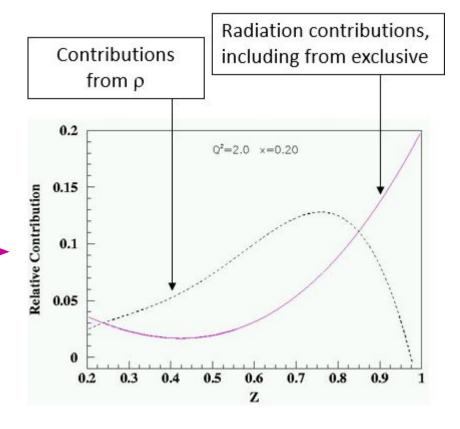
Presented to the 2025 Hall C Winter Collaboration Meeting
On behalf of the NPS Collaboration
Jan 13th, 2025



Outline

- $oldsymbol{\Box}$ π^0 Physics
 - TMD Background
 - Validation of Factorization theorem
 - E12-13-007, E12-23-014, and E12-13-010 in Hall C
- \Box π^0 in parallel with DVCS
 - \circ NPS experiment setup as it relates to the π^0
- NPS RG-1a analysis plan
 - Current Status
 - RG-1a kinematic coverage
- ☐ Current status of the π^0 with the NPS
 - Initial missing mass observation
 - Heading towards L/T separation of exclusive π^0
- ☐ Next Steps

SIDIS Pion Physics Considerations

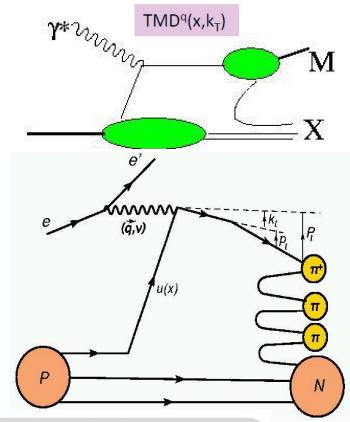


- Low-energy (x,z) factorization, or possible convolution in terms of quark distribution and fragmentation functions, at JLab-12 GeV must be well validated to substantiate the SIDIS science output
 - Many questions at intermediate-large z (~0.2-1) and low-intermediate Q² (~2-10 GeV²) remain

Advantages of (e,e' π^0) beyond (e,e' $\pi^{+/-}$)?

(e,e'π⁰):
 No diffractive ρ contributions
 No exclusive pole contributions
 Reduced resonance contributions
 Proportional to average D

Non-trivial contributions to (e,e' π^+) Cross Sections:



E12-13-007: Basic (e,e' π^o) cross sections

- ☐ Linked to framework of Transverse Momentum Dependent Parton Distributions (TMDs)
- Basic cross sections are a fundamental test of understanding SIDIS in 12 GeV kinematics and essential for most future experiments and their interpretation
- Validation of factorization theorem
- Target-mass corrections and In(1-z) resummations require precision large-z data
- Transverse momentum widths of quarks with different flavor (and polarization) can be different

$$\sigma = \sum_{q} e_q^2 f(x) \otimes D(z)$$

\square Advantages of (e,e' π °) beyond (e,e' π +/-)

- Experimental and theoretical advantages to validate understanding of SIDIS
- > Can verify: $\sigma^{\pi^0}(x,z) = \frac{1}{2} (\sigma^{\pi^+}(x,z) + \sigma^{\pi^-}(x,z))$
- ➤ Confirms understanding of flavor decomposition/k_T dependence

E12-13-007 goal: Measure the basic SIDIS cross sections of π^o production off the proton, including a map of the P_T dependence (P_T ~ Λ < 0.5 GeV), to validate flavor decomposition and the k_T dependence of (unpolarized) up and down quarks

DEUS MEA LUX EST

E12-23-014: R = $\sigma_{\rm L}/\sigma_{\rm T}$, p/d ratios, P_h dependence, and azimuthal asymmetries with π^0 SIDIS

- ☐ Measure $R_{LT} = \sigma_L/\sigma_T$, the ratios of d/u cross sections, the transverse momentum dependence of the cross section, and the spin-independent and beam-spin-dependent modulations of the cross section
 - Data taken on both Hydrogen and Deuterium targets to allow for precision ratio of proton to deuteron
- □ Physics goals are driven by the need to more fully understand the production processes that enter SIDIS for better understanding of the 3D nucleon structure
 - Dynamic and target higher twist, deep-exclusive processes, VM, CSV

Projections for R_{LT} SIDIS as a function of p_T and z0.3

0.2

SLAC parameterization for R_{DIS} 0.1

0.1

Pt-pt error in R_{SIDIS} - R_{DIS} 0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

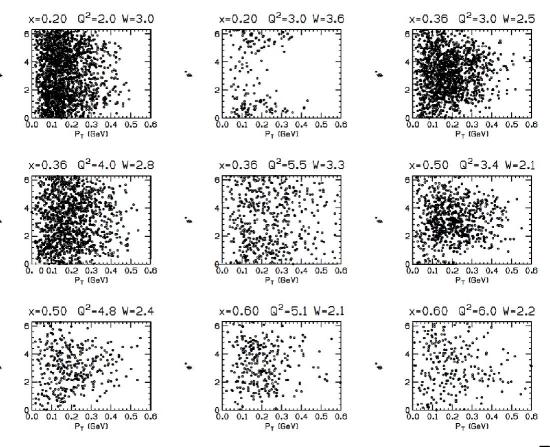
0.0

0.0

0.0

0.0

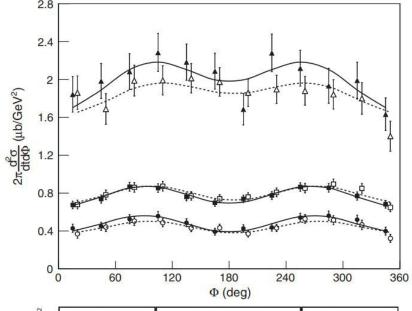
0.0

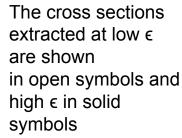

0.0

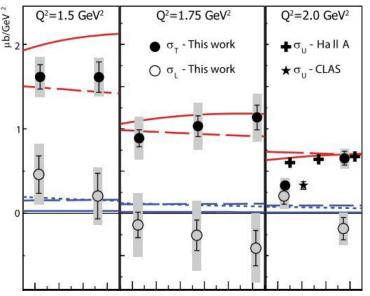
0.0

0.0

0.0


Angles for which NPS has good acceptance in (z,p_{τ})





Early Insights into Exclusive π^0 and Factorization

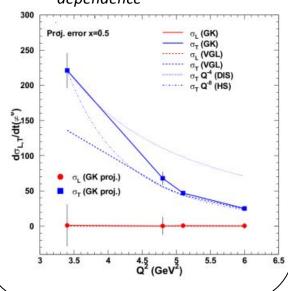
- π^0 Electroproduction Cross Section at Hall A at Jefferson Lab
 - \circ L/T-separated π^0 cross sections measured at Hall A, covering 1.5 $< Q^2 < 2$ and $x_B = 0.36$
 - VGG model (short dashed lines) predicts a small longitudinal cross-section, matching data
 - Models with chiral-odd GPD and twist-3 PDAs also in good agreement for both L/T
 - Indicates potential access to transversity GPDs of the nucleon through exclusive π^0 electroproduction for $Q^2 \ge 1.5$ GeV²

"M. Defurne et al, PRL 117 (2016) no.26, 262001"

Higher transverse contribution: transversity GPD models agree well with data. Suggests pQCD regime isn't reached

DEUS MEA

E12-13-010 Exclusive π^0 Electroproduction with NPS in Hall C

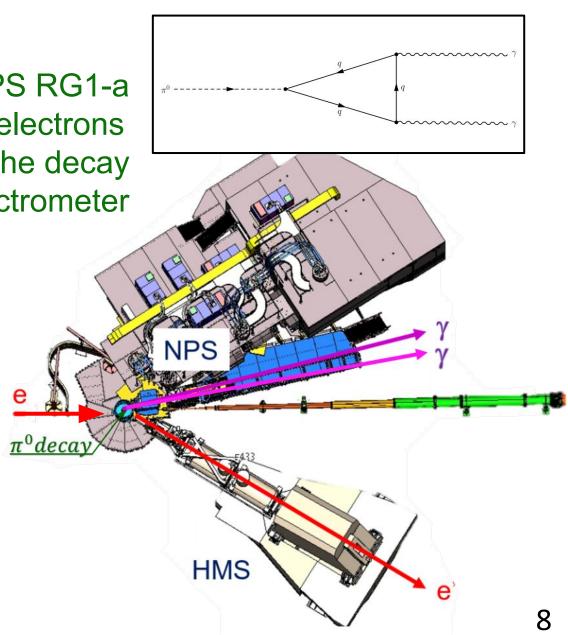

- □ An extension and compliment to the kinematic settings examined in Hall A
 - Increased the Q² reach to even higher values at fixed x_R
 - Also Expanded the kinematic coverage to smaller values of X_B
 - \circ E12-13-010 also provides data on σ_L and σ_T at higher Q² for reliable interpretation of 12 GeV GPD data
- $lue{}$ Motivation for π^0 electroproduction towards GPDs:
 - Sensitive to transversity GPDs (~H_q, ~E_q), which are less accessible in vector meson production.
 - Offers insights into parton helicity flipping (chiral-odd GPDs).
 - No need for polarized targets or beams to access these polarized distributions.

E12-13-010 goal: Perform an L/T separation of the exclusive π^0 electroproduction cross section as a function of Q^2 .

π⁰ Exclusive Cross Sections

- Relative L/T contribution to π⁰
 cross section important in
 probing transversity
- Results from Hall A at 6 GeV
 Jlab suggest that the longitudinal cross section in π⁰ production is non-zero up to Q²=2 GeV²

12 GeV projections: confirm Q²/t dependence

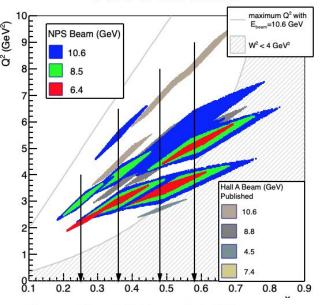

DEUS MEA LUX EST

Semi-inclusive and Exclusive π^0 with NPS in Hall C

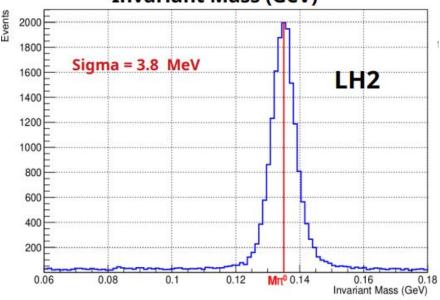
These experiments were part of the NPS RG1-a and detected in coincidence scattered electrons in the existing HMS and photons from the decay of the π^0 using the Neutral Particle Spectrometer (NPS)

The NPS detected photons corresponding to π^0 electroproduction close to the direction of \vec{q} , the exchanged virtual photon three-momentum transfer

- Average lifetime of 8.5×10⁻¹⁷ seconds.
- The HMS Spectrometer benefits from relatively small point-to-point uncertainties, which are crucial for meaningful L/T separations

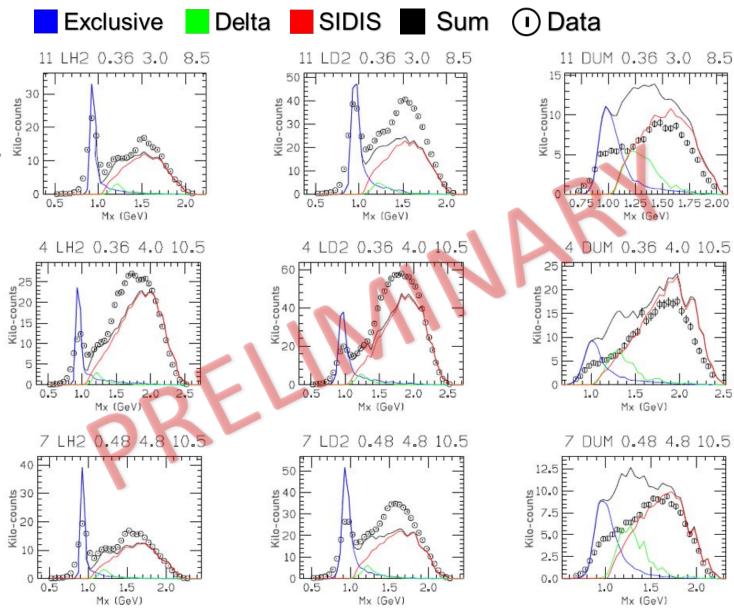

Analysis Game Plan

- The overall analysis for the NPS RG-1a is in progress with the Pass-1 having been run just prior to the Holiday break.
- Initial calibrations of the HMS subdetectors and beamline components have been finalized.
 - HMS Optics Calibration
 - Beam Charge/Position Measurements
 - **Coincidence Timing Corrections**
- These calibrations are being done to maximize the acceptance of the overall experimental apparatus
- Next steps will include waveform analysis and further refinements of the NPS detector Calibrations along with the π^0 analysis
- The π^0 is also providing useful information for calibration of the NPS detector itself
 - Supplemental to the elastic calibration. $\pi^0 \rightarrow \gamma \gamma$ Calibration
- Stay tuned for more details!


2025 Hall C Winter Collaboration Meeting 1/13/2025

DVCS 12 GeV Hall A/C

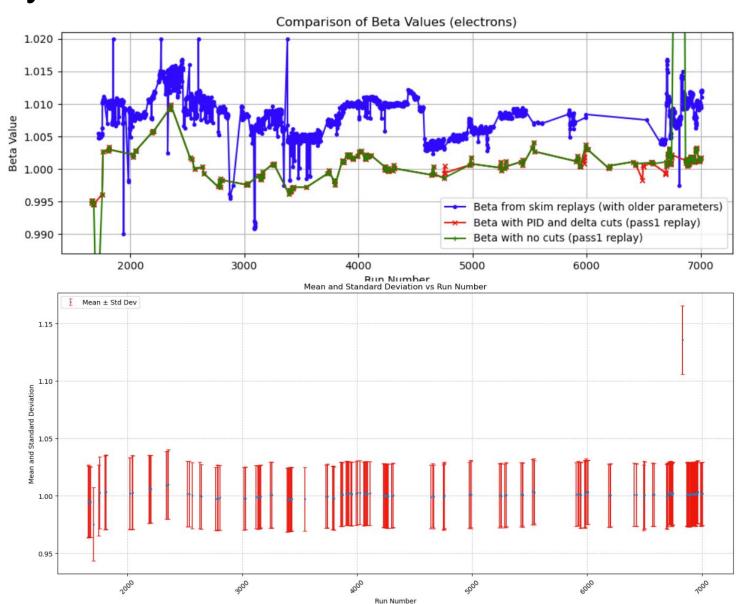
Invariant Mass (GeV)


Credit: Wassim Hamdi

Credit: Peter Bosted

DEUS MEA

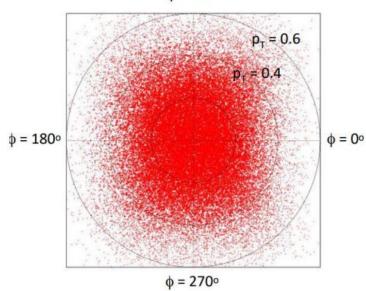
π^0 Missing Mass


- Example of the π⁰ missing mass statistics from three of the 56 different kinematics from the Pass-1 data analysis
 - Two cryogenic targets were used (LD₂ and LH₂) along with a dummy/ empty Al target for background subtractions
- The colored curves represent the SIMC predictions for exclusive, Delta, and Sidis (solid black curve is the sum) and the open circles are the measured data
- NPS Fiducial cuts were applied to both SIMC and data

HMS Beta Value Stability in Pass1

DEUS MEA

- Extracted HMS Beta during the RG1-a run period
- Refinement in the HMS calibrations, PID cuts, timing corrections, etc. showed good improvement over the values used for online running
 - Both Pass-0 (online analysis) and Pass-1 replay shown for comparison
 - Beta values are consistent across the experiment and the values were improved ~80% with the Pass-1 calibrations applied


DEUS MEA LUX EST

Next Steps

- \Box After the initial replay of the data with the pass-1 calibrations verified, the next steps will be to refine the code used to reconstruct the 4-vector of the candidate π^0 decays
 - Using two photon hits detected in the NPS over all the kinematics and select good events
 - Refining the selection criteria and comparing to simulated acceptance of the NPS detector to determine efficiencies (comparing probabilities of edge case events clustering)
- □ Once the good events are selected, full analysis of the kinematic bins will continue
 - Accumulate the π⁰→γγ accidental-subtracted invariant mass spectra in bins of x, e-π⁰ missing mass, helicity and transverse momentum, etc.
 - Also since RG-1a ran on two different targets we can also compare the output from the LD2 vs LH2 targets

(e,e'π⁰) with NPS E12-13-007

 $\phi = 90^{\circ}$

Summary

- Hall C E12-13-007, E12-23-014, and E12-13-010 give probes for TMDs and will allow for a L/T separation measurement across a large kinematic range, along with SIDIS cross section of π^0
 - Also can show validation of Low-energy (x,z) factorization
- The NPS RG-1a experiments (2023-2024) ran in Hall C at JLab using the NPS detector in combination with the HMS spectrometer to detect photons corresponding to π^0 electroproduction
- □ There was good coverage of the desired kinematic range in X_b and Q² despite the challenges which were overcome
- ☐ HMS subdetector calibrations have been finalized with Pass-1 replay complete, analysis is in progress
- The π^0 missing mass peak has been preliminarily identified from online running analysis and is being refined in Pass-1
- $oldsymbol{\Box}$ π^0 reconstruction ongoing

Thank you to the NPS Collaboration Thanks to all my colleagues at JLab and elsewhere Thank you all for your time

