PionLT (E12-19-006) Analysis Updates (Low Q² L/T Separated Analysis) π⁺ Form Factor

Vijay Kumar Postdoc at University of Regina

Hall C Winter 2025 Meeting

Charged Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form $F_{\pi}(Q^2) = \int \phi_{\pi}^*(p) \phi_{\pi}(p+q) dp$ factor is the overlap integral:

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} . While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

Slide credit: Dr. Garth Huber

January 13, 2024

 π^{\star} Form Factor – Low Q^2 (Direct Measurement)

At low Q^2 , F_{π} can be measured <u>model-independently</u> via high energy elastic π^2 scattering from atomic electrons in Hydrogen

- CERN SPS used 300 GeV pions to measure form factor up to Q² = 0.25 GeV² [Amendolia, et al., NPB 277(1986)168]
- Data used to extract pion charge radius $r_{\pi} = 0.657 \pm 0.012$ fm

Maximum accessible Q² roughly proportional to pion beam energy

Q²=1 GeV² requires 1 TeV pion beam

Slide credit: Dr. Garth Huber

π^+ Form Factor via Electro-production (An Indirect Technique)

Above Q²>0.3 GeV², F_{π} is measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e, e'\pi^+)n$

 $\left| p \right\rangle = \left| p \right\rangle_{0} + \left| n \pi^{+} \right\rangle + \dots$

- At small –t, the pion pole process dominates the longitudinal cross section, σ_L
- In Born term model, F_{π^2} appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique:

- 1. Isolating σ_L experimentally challenging.
- The F_π values are in principle dependent upon the model used, but this dependence is expected to be reduced at sufficiently small -t.

Slide credit: Dr. Garth Huber

The main objective of my Ph.D. thesis analysis is to enhance the understanding of the indirect technique by analyzing data at low Q² with high precision and comparing it with direct measurements.

Rosenbluth (LT) Cross-Section Separation Technique

- **L**-T separation required to separate σ_L from σ_T
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole
- Need to measure *t*-dependence of σ_L at fixed Q²,W

Slide credit: Dr. Garth Huber

The E12-19-006 Experiment

The experiment conducted in three phases,

- First run period: ran in summer 2019 (my Ph.D. thesis data)
- Second run period: ran in fall 2021
- Third run period: ran in fall 2022

The reaction system

•

• Nathan Heinrich

Muhammad Junaid

Spokesperson

• Dr. Garth Huber (UofR), Dr. Tanja Horn (CUA), and Dr. David Gaskell (JLab)

The E12-19-006 Experiment

The data acquired in the first run period,

$Q^2 = 0.38 \text{ GeV}^2, W = 2.20 \text{ GeV}, -t = 0.008 \text{ GeV}^2$								
$E_b = 2.7 \text{ GeV}, \epsilon_1 = 0.286$			$E_b = 3.6 \text{ GeV}, \epsilon_2 = 0.629$			$E_b = 4.5 \text{ GeV}, \epsilon_3 = 0.781$		
Spectrometer Angle (θ°)		Spectrometer Angle (θ°)			Spectrometer Angle (θ°)			
SHMS	HMS	Setting	SHMS	HMS	Setting	SHMS	HMS	Setting
5.70	31.965	Center	5.75	15.83	Right2	7.645	10.965	Right1
7.695	31.965	Left1	6.87	15.83	Right1	10.325	10.965	Center
9.705	31.965	Left2	8.87	15.83	Center	12.34	10.965	Left1
-	-	N/A	10.87	15.83	Left1	14.325	10.965	Left2
_	-	N/A	12.87	15.83	Left2	-	-	N/A

		2	2				2	
${f Q}^2={f 0.42}~{f GeV}^2,W={f 2.20},-t={f 0.010}~{f GeV}^2$								
$E_b = 2.7 \text{ GeV}, \epsilon_1 = 0.264$			$E_b = 3.6 \text{ GeV}, \epsilon_2 = 0.617$			$E_b = 4.5 \text{ GeV}, \epsilon_3 = 0.774$		
Spectrometer Angle (θ°)			Spectrometer Angle (θ°)			Spectrometer Angle (θ°)		
SHMS	HMS	Setting	SHMS	HMS	Setting	SHMS	HMS	Setting
5.70	35.19	Center	9.200	17.025	Center	6.870	11.745	Right2
7.75	35.175	Left1	11.20	17.025	Left1	8.075	11.745	Right1
9.740	35.175	Left2	13.20	17.025	Left2	10.075	11.745	Center
-	-	N/A	-	-	N/A	12.075	11.745	Left1
_	-	N/A	-	-	N/A	14.08	11.745	Left2

January 13, 2024

Yield Correction Factors (Crucial to LT separation)

•Heep[•], $e + p \rightarrow e' + p$, Analysis (Kinematic offsets)

- Achieving high-quality LT separation necessitates more precise beam energy, spectrometer angles, and momenta than what is provided by power supply calibrations and floor angle markings.
 - Heep reaction kinematically over-determined (e' & p detected).
 - We used the deviations between observed and physically required values to determine the experimental offsets.

Quantity	SHMS	HMS	
In-plane angle	$2.8 \mathrm{mrad}$	$1.2 \mathrm{mrad}$	
Out-of-plane angle	0.0	$0.99 \mathrm{mrad}$	
Central Momentum	0.0	0.15%	
Beam Energy	0.01% to $0.07%$		

For Q² = 0.38 and 0.42 → GeV² (Low Q²) LT Separation Analysis

•Heep[•], $e + p \rightarrow e' + p$, Analysis (Elastic X-Section)

- Reproducing the known elastic cross-section before the LT separation study increases confidence in the high-quality LT separation results.
 - We studied the elastic x-section of the 1st run of the experiment

Experimental yield

Error bar statistical only

 $e + p \rightarrow e' + \pi^+ + n$ Event Selection (Coincidence Timing)

$e + p \rightarrow e' + \pi^+ + n$ Event Selection (Missing Mass)

 $Q^2 = 0.38 \text{ GeV}^2$

$e + p \rightarrow e' + \pi^+ + n$ Diamond Cut

 $Q^2 = 0.38 \text{ GeV}^2$

- The absolute acceptance of the spectrometers in Hall C varies for different beam energies or ε settings.
- The LT separation technique requires uniform acceptance across all ε data.

$e + p \rightarrow e' + \pi^+ + n$ -t Binning & Φ Binning

• To separate the individual π^+ cross section terms as a function of -t, the data were binned into -t bins.

- Checked the Monte Carlo simulation resolution for the fine -t binning.
- Binned all the data into 8 t bins.
- The general criterion that followed while binning the data was to have approximate the same statistics in each -t bin.
- Each t bin is further binned into 16 Φ bins to have the better convergence of the Rosenbluth separation technique.

$e + p \rightarrow e' + \pi^+ + n$ Experimental Cross-Section (Iterative Procedure)

January 13, 2024

Hall C Winter 2025 Meeting

$e + p \rightarrow e' + \pi^+ + n$ Yield Comparison (Acceptance Variables)

Plot: Mid ϵ , Center Setting of Q² = 0.38 GeV² data

$e + p \rightarrow e' + \pi^+ + n$ Yield Comparison (Kinematic Variables)

The Separated Cross-Section

The Systematic Uncertainty

 $e + p \to e' + \pi^+ + n$

Extract $F_{\pi}(Q^2)$ From Separated σ_{L} (Not Yet Done)

VGL Regge Model:

- Feynman propagator, $\frac{1}{t \rho m_{\rm R}^2}$ replaced by π and $\rho m_{\rm R}^2$ egge propagators.
- Represents the exchange of a series of particles, compared to a single particle.
- $F_{\pi}(Q^2)$ extract as

$$F_{\pi}(Q^2) = \frac{1}{1 + \frac{Q^2}{\Lambda^2}}$$

- Fit to $\sigma_{\rm L}$ to the model gives the free parameter, Λ_{π}^2 (trajectory cutoff) for each Q².
- CKY and Perry & Thomas models are also available now, we will use to compare the results.

Outlook/Future Work

- Completing the LT separation analysis for $Q^2 = 0.42$ GeV² data.
- Final checks are in progress for $Q^2 = 0.38$ GeV² data.
- The form factor will be extracted for both Q² (0.38 and 0.42 GeV²) and compared with the elastic measurements.
- Preparing to begin work on the final Physical Review Letters (PRL) publication.

Thank You!

Group Members:

Garth Huber, Tanja Horn, David Gaskell, Pete Markowitz, Richard Trotta, Ali Usman, Nathan Heinrich, Julie Roche, Muhammad Junaid, Alicia Postuma, Konrad Aniol, Abdennacer Hamdi and Casey Morean.