

Hadron Propagation and Color Transparency at 12 GeV E12-06-107

Carlos Ayerbe Gayoso

On behalf of Holly Szumila-Vance (FIU) and Dipangkar Dutta (MSU)

Outline

- Color transparency (CT)
- Summary of proton results
- Pion CT at Hall C

Nuclear transparency

- Nuclear transparency:
 - The ratio of the cross section per nucleon for a process on a bound nucleon in the nucleus to the cross section for the process on a free nucleon

$$T_{A} = \frac{\sigma_{A}}{A \sigma_{N}}$$
 Nuclear cross-section
Free Nucleon cross-section

$$\sigma_A = \sigma_N A^{\alpha}$$

A.S. Carroll et al. Phys Lett 80B 319 (1979) and many other papers

Transparency refers to the probability that a knocked out nucleon is deflected or absorbed (escape probability)

 $T_A = A^{\alpha-1}$

 α < 1 interpreted as due to the strong interaction nature of the probe

Nuclear transparency

Traditional nuclear physics calculations (Glauber) predict energy independent transparency

Measuring transparency includes:

- scattering cross section
- Glauber multiple scattering
- Correlations and Final State Interaction (FSI) effects

Color transparency (CT)

 From fundamental considerations (quantum mechanics, relativity, QCD) it is predicted (Brodsky, Mueller) that fast protons scattered from the nucleus will have decreased final state interactions

Color transparency (CT)

- The **onset** of CT requires the following conditions
 - "squeezing" Hadrons fluctuate to small transverse size, pointlike configuration (PLC) (achievable at high energies) (QM)
 - "freezing" The compact size is maintained while traversing the nuclear medium (Relativity)
 - The PLC is 'color screened' it passes undisturbed through the nuclear medium (Strong Force)

CT established at high energies

Coherent diffractive dissociation of 500 GeV/c pions on C and Pt

Fit to $\sigma = \sigma_0 A^{\alpha}$ Pion-nucleus total cross section, α =1.6

CT predictions by L. L. Frankfurt, G. A. Miller, and M.Strikman, Phys. Lett. B304, 1 (1993)

Onset of CT

- The onset of CT can be taken as a signature of QCD reaching the perturbative domain, i.e. description of nuclei in terms of **quarks and gluons instead baryons and mesons.**
- CT is implied by successful description of DIS.
 - Scaling at low x requires a suppression of interaction.

 Color Transparency is closely linked to the concept of softhard factorization in exclusive processes. Factorization is not rigorously possible without the onset of CT. [Strikman, Frankfurt, Miller and Sargsian]

The question is:

At what Q² does the onset of nuclear color transparency begin?

CT onset experiments

Baryon CT Experiments

- observed enhancement in transparency •
- inconsistent with CT only
- could be explained by including nuclear filtering or charm resonance

Proton E12-06-107 ¹²C(e,e'p)

D. Bhetuwal et al, PRL126:082301 (2021)D. Bhetuwal, et al, Phys. Rev. C 108, 025203 (2023)

Recent proton experiment shows **no onset** up to Q²<14 GeV²

Possible explanations

• **No PLC** was formed (Feynman Mechanism)

 G. Miller, Physics 2022, 4(2), 590-596; https://doi.org/10.3390/physics4020039
O. Caplow-Munro and G. Miller, PRC 104, L012201 (2021)

Not high enough in Q² (Holographic light front QCD predictions)

S. Brodsky and G. de Téramond, Physics 2022, 4(2), 633-646; https://doi.org/10.3390/physics4020042

No onset?

There is **no evidence** of CT onset in the baryonic sector

Nature of Strong force, may make harder to achieve the PLC conditions.

Perhaps **pions or mesons** in general, are more suitable to achieve the PLC

Meson CT experiments

Hall-C Experiment E01-107

A(e,e' π+)

We observe both, a **T and A dependence** of the transparency **as evidence for CT**

B. Clasie et al, PRL99:242502 (2007) X. Qian et al, PRC81:055209 (2010)

Meson CT experiments

CLAS E02-110 rho electro-production

 $A(e,e'\rho^0)$

E12-06-106: Study of Color Transparency (CT) in Exclusive Vector Meson Electroproduction off Nuclei *Spokespeople*: W. Armstrong, L. El Fassi,K. Hafidi, M. Holtrop, B. Mustapha

¹²C projections. ⁶³Cu and ¹¹⁸Sn targets also used. Data taken during the **2023/24 beam period**

Pion CT E12-06-107

Second part of E12-06-107 (first was proton CT)

- A(e, e'π⁺)
- 17.5 PAC days of running
- 11 GeV beam
- ¹H, ²H, ¹²C, ⁶³Cu
- 0.4< -t <0.48 GeV² minimized contributions from rescattering or multi-nucleon effects

Q^2	W	$ heta_{e'}^{HMS}$	$E_{e'}$	$ heta_{\pi}^{SHMS}$	p_{π}	k_{π}
$(\text{GeV/c})^2$	GeV	deg	GeV	deg	${\rm GeV/c}$	GeV
5.0	2.43	16.28	5.67	15.96	5.110	0.67
6.5	2.74	22.13	4.010	11.72	6.771	0.67
8.0	3.02	32.37	2.340	7.90	8.442	0.67
9.5	3.09	47.71	1.320	5.52	9.42	0.74

The final analysis will evaluate the **A and T dependence** driven by the less understood reaction mechanism.

Measure the onset over a large momentum range

Extending the momentum range will allows to map onset of CT through factorization regime

Summary

Onset of CT is an exciting opportunity to explore the connection between hadronic and partonic degrees of freedom in nuclei

X Not observed in protons in the recent Hall C experiment

- → Hall C will measure A(e, e' π) in FY2026
 - Pion propagation in nuclear matter
 - Map onset of CT through factorization regime

Looking forward to running next year. Sign up for shifts, and join our team!

Onset of CT

Understanding **nucleons and nuclei** in terms of **quarks and gluons** is still one of the important unsolved problem of the Standard Model of nuclear and particle physics.

- The onset of CT can be taken as a signature of QCD reaching the perturbative domain, i.e. description of nuclei in terms of quarks and gluons instead baryons and mesons.
- Color Transparency is closely linked to the concept of soft-hard factorization in exclusive processes.

Factorization is not rigorously possible without the onset of CT. [Strikman, Frankfurt, Miller and Sargsian]

The question is:

At what Q² does the onset of nuclear color transparency begin?

