The CaFe Experiment

Hall C CaFe Group:

N. Swan, C. Yero, D. Nguyen, H. Szumila Vance, L.B. Weinstein

January 14, 2025

Proposal: PR12-17-005

Spokespeople: D. Higinbotham (Jlab), F. Hauenstein (Jlab), O. Hen (MIT), L.B. Weinstein (ODU)

THE CATHOLIC

UNIVERSITY

OF AMERICA

Outline

- Motivation
- Systematic Uncertainties
 - Cut Variations
 - Radiative Corrections
 - Transparency
- Results

Short Range Correlations

- SRCs are temporary short distance high momentum fluctuations
- High relative momentum (k_r>k_F~250 MeV/c)
 - Depends on the short-range part of the N-N interaction
- Unchanged center-of-mass momentum
- Open questions
 - Momentum structure
 - 3 nucleon correlations
 - Which nucleons pair

np-dominance in Asymmetric Nuclei

- A(e,e'n)/A(e,e'p) cross-section ratio
- Low missing momentum n/p ratio grows like N/Z
- High missing momentum n/p ratio is constant
- This is consistent with np pair dominance

https://www.nature.com/articles/s41586-018-0400-z 4

CaFe Motivation

Which nucleons form SRC pairs?

- Compare number of high-momentum (paired) protons in ⁴⁰Ca, ⁴⁸Ca, and ⁵⁴Fe
 - ⁴⁰Ca: filled 1s, 1p, and 2s/1d p and n shells
 - ⁴⁸Ca: add 8 f_{7/2} neutrons
 - ⁵⁴Fe: add 6 $f_{7/2}$ protons
 - First Paper
- Measure A(e,e'p) on d, ⁹Be, ^{10,11}B, ¹²C, ^{40,48}Ca, ⁵⁴Fe, and ¹⁹⁷Au at high and low missing momentum
 - ⁹Be-¹⁰B-¹¹B-¹²C quartet and ⁴⁰Ca-⁴⁸Ca-⁵⁴Fe triplet

Separate A and N/Z dependence on pairing

Hall C: Experimental Setup Cont.

 $\vec{q} \equiv \vec{k} - \vec{k}'$

 $x_{
m Bj} \equiv rac{2M}{2M}$

- E₀ = 10.6 GeV
- E'=8.55 GeV
- Θ_{a} =8.3 Degrees
- Q² =2.1 (GeV/c)^2
- $P_{miss} \approx 400 \text{ MeV/c}$
 - $|P_p| = 1.325 \text{ GeV/c}$
 - $\Theta_{\rm p} = 66.4^{\circ}$
- $P_{miss} \approx 150 \text{ MeV/c}$
 - |P_p| = 1.820 GeV
 - $\Theta_p = 48.3$ Degrees

6

Cut Variations

- Examine how sensitive the data is to cuts (systematic uncertainty)
- Data Selection Cuts (and 2σ cut variations)
 - PID
 - $0.8 < \frac{E_{tot}}{P_{cent}} < 1.3$
 - -2.0 < ep Coin Time < 2 ns
 - Acceptance
 - Collimator Cut $\pm 8\%$
 - Kinematics
 - $Q^2 > 1.8 \pm 0.1 \, \text{GeV/c}^2$
 - MF
 - $P_m < 0.27 \pm 0.02$ GeV/c
 - $-0.02 < E_m < 0.09 \pm 0.005$ GeV
 - SRC
 - + $0.375 \pm 0.025 < P_m < 0.7 \pm 0.1$ GeV/c
 - $x_{bj} > 1.2 \pm 0.1$
 - $\theta_{rq} < 40 \pm 4 \text{ deg}$

SRC Ratio Uncertainty Single Ratio Ca48 SRC / Ca40 SRC (systematics)

Cut Variation: Single & Double Ratios

Ratios to C											
Single Ratio (%)	Be9/C12	B10/C12	B11/C12	Ca40/C12	Ca48/C12	Fe54/C12	Au197/C12				
σ/μ (MF)	0.4	0.2	0.1	0.3	0.5	0.3	0.7				
σ/μ (SRC)	1.3	1.0	0.9	2.2	3.1	2.4	4.9				
Double Ratio (%)	Be9/C12	B10/C12	B11/C12	Ca40/C12	Ca48/C12	Fe54/C12	Au197/C12				
σ/μ	1.4	1.0	0.9	2.2	3.1	2.4	4.9				

Ratio to Ca40								
Single Ratio (%)	Fe54/Ca40	Ca48/Ca40						
σ/μ (MF)	0.4	0.3						
σ/μ (SRC)	1.0	1.0						
Double Ratio (%)	Fe54/Ca40	Ca48/Ca40						
σ/μ	1.1	1						

SRC uncertainties dominate and increase with larger differences between nuclei.

Radiative Correction Factors

Kinematics		MF			SRC	
Target	C12	Fe56	Au197	C12	Fe56	Au197
Rad/Norad Ratio	0.618	0.577	0.451	0.742	0.734	0.604
Stat Uncertainty	0.009	0.006	0.005	0.007	0.012	0.014
Cut Var. Uncertainty	0.005	0.004	0.003	0.03	0.04	0.04

- Ratios of corrections are important
 - MF to SRC
 - Different Nuclei
 - Small A dependence implies corrections mostly cancel

Proton Transparency

- Use measured ratios to C
- $T(A) \propto A^{-0.34 \pm 0.02}$

Systematic Uncertainties CaFe Triplet

	Systematic Uncertainties (%)									
Ratio	Radiative Correction	Transparency	Cut Variation	Net						
		MF Single Rat	io							
Ca48/Ca40	0	0.4	4 0.3	0.7						
Fe54/Ca48	1.0	0.	6 0.4	1.2						
		SRC Single Rat	io							
Ca48/Ca40	0	0.4	4 0.7	0.8						
Fe54/Ca48	1.0	0.	6 1	. 1.5						
	Double Ratio									
Ca48/Ca40	0	0.	3.0	3 0.8						
Fe54/Ca48	1.0	0.	D 1.1	1.5						

• Single

• R =
$$\frac{Y_A}{Y_{C12}}$$

- Double
 - Normalization Factors Cancel
- MF should be proportional to number protons
- SRC should reflect probability of being in SRC
- Additional Corrections for
 - Random coincidences
 - Oil contamination (Ca targets)
 - Isotopic Impurity (Ca48 90.5%)
 - Chemical Impurity (B₄C)

$$Y_A: \frac{N}{Q \cdot \epsilon_i \cdot T_N \cdot \sigma_t \cdot Z/A}$$

 Y_A : nucleus A yieldN : (e, e'p) coincidence countsQ : total charge [mC] ϵ_i : detector/DAQ efficiencies T_N : nuclear transparency σ_t : target thickness [g/cm²]

$$\frac{A(e, e'p)^{SRC}/A(e, e'p)^{MF}}{^{12}C(e, e'p)^{SRC}/^{12}C(e, e'p)^{MF}}$$

Pairing depends on A (not N/Z)

SRC Single Ratio increases with A

Per Proton Single SRC Ratio to C

Models

• SRG

- Calculation of the nuclear momentum distribution
- Spatial
 - Counts the number of protons and neutrons within 1 Fermi of each other
 - A. Denniston & J. Estee, personal communication
- l=0, n=0
 - Counts the number of proton-neutron pairs in a relative l=0, n=0 state.
 - Colle et al, Physical Review C 92 (2015)
- L=0, l=0
 - Counts the number of proton-neutron pairs in a relative L=0, l=0 state.
 - Jerry Miller, personal communication

SRC Enhancement

Per Nucleon Single Ratio to ⁴⁰Ca

Conclusion

- The SRC Single Ratio is A dependent
- The ⁴⁸Ca/⁴⁰Ca SRC Single Ratio lower than expected
- The ⁵⁴Fe/⁴⁰Ca SRC Single Ratio higher than expected
- Implies
 - Strong Intra-shell pairing in the f^{7/2} shell
 - Weak Inter-shell pairing between the f^{7/2} shell and ⁴⁰Ca core

Questions?

Back up

Nuclear Shell Model

- The nucleus consists of *A* nucleons interacting via the Strong Interaction
- Nucleons move independently in a mean field generated by the other (A-1) nucleons
- Successfully describes bulk properties of nuclei
 - Shell structure
 - Excitation energies
 - Spin, parities
 - Nuclear magic numbers
- Typical momentum less than Fermi momentum, k_F~250 MeV/C

20

Limitations of the Nuclear Shell Model

- Measured (e,e'p) proton knockout from valence shells
 - Found ~60-70% of predicted occupancy
- Corrections
 - Long range correlations
 - Short range correlations (SRCs)
 - 20-25%

np-dominance in Asymmetric Nuclei Cont.

- double ratio of (e,e'p)
 - (high momentum p or n)/(low momentum p or n) for nucleus A relative to ¹²C
 - Proton ratio grows like N/Z
 - Neutron ratio is near constant

M. Duer et al., Nature 560, 617 (2018) https://www.nature.com/articles/s41586-018-0400-z 22

HMS Proton Efficiency

- Measure H(e,e'p)/H(e,e')p
- Select H(e,e') events that should have a proton in the HMS
 - $0.92 < W < 0.97 \, \text{GeV}$
 - -2 < z Target < 2 cm
 - $-0.01 < \text{SHMS x'}_{tar} < 0.01 \text{ rad (phi)}$
 - $0.002 < SHMS \, y_{tar}^\prime < 0.006$ rad (theta)
 - $0.8 < \frac{E_{tot}}{P_{cent}} < 1.8$
- H(e,e'p) events
 - Should +
 - -5 < ep Coin Time < 5 ns
 - + $-0.02 < \mathrm{E_m} < 0.9~\mathrm{GeV}$
- Iteratively tightened cuts until ratios became flat

HMS Proton Efficiency

Radiative Correction: ¹²C Benhar Simc vs Data

MF & SRC ¹²C p_{miss} Radiative Correction

MF HMS & SHMS Collimator Cuts (±2o)

MF Q² & P_m Cuts ($\pm 2\sigma$)

Heavy MF 4-Momentum Transfer

Heavy MF Missing Momentum

MF E_m Cuts (±2 σ)

Heavy MF Missing Energy (Nuclear Physics)

Mean and σ /mean: MF

MF⁴⁸Ca Em vs Pm

- Hydrogen Peak
 - -0.01 < emiss < 0.025 (GeV)
 - 0 < pmiss < 0.03 (GeV)
- Signal Region
 - 0 < emiss < 0.05 (GeV)
 - 0.07 < pmiss < 0.220 (GeV)

Missing Energy vs Missing Momentum

	MF ⁴⁸	³ Ca Data	
Run	H (mg/cm²)	Carbon (mg/cm²)	Carbon (%)
16978	6.4	38.4	3.65
16979	5.2	31.2	2.97
17093	1	6	0.57
17094	0.9	5.2	0.49
17096	0.9	5.2	0.49

MF⁴⁸Ca H-thickness (SIMC)

- $48Ca_{thick} = =1051 \text{ mg/cm}^2$ • $H_{thick} = \frac{Data \text{ Counts}}{Data \text{ Q}/simc \text{ O}^*Simc \text{ Counts}} * LH2 \text{ Simc thickness}$
- Run 16979
 - $H_{thick} = \frac{5969}{75.99mC/_{1mC}*10857.2} * 723.1mg/cm^2 = 5.232 mg/cm^2$

		MF	⁴⁸ Ca Dat	а
	Run	Data Counts	Q (mC)	H-thick (mg/cm^2)
	16978	528	5.5	6.4
	16979	5969	76.0	5.2
MF	17093	748	49.6	1.0
	17094	165	12.6	0.87
	17096	1290	98.5	0.87

⁴⁸Ca: ¹²C-thick

•
$$\%C = \frac{C_{thick}}{48Ca_{thick}} * 100$$

	Mf ⁴⁸ Ca Data									
Run	H (mg/cm²)	Carbon (mg/cm²)	Carbon (%)							
16978	6.4	38.4	3.65							
16979	5.2	31.2	2.97							
17093	1	6	0.57							
17094	0.9	5.2	0.49							
17096	0.9	5.2	0.49							

⁴⁸Ca

• A ~3% drop corresponds to the prediction of having 1 C per 2 H

MF Single Ratio to C

Pairing depends on A (not N/Z)

Double Ratio increases with A

Per Proton Double Ratio to C

Calculating Electron Cross Section

• $N_{events into solid angle \Delta\Omega} = Data Counts * SIMC Ratio$

• $N_{incident} = \frac{Q(C)}{1.602 * 10^{-19}(C)}$

- $nx = \rho_{H2} * Target Length * N_A$
 - Target Length modified by z-Target cut
- Electron solid angle modified by hxptar and hyptar cuts

H(e.e'p) Elastics for			
Beam Energy (Eb) = 10.549	G	€V	
e- angle (th_e) = 8.300	deo	э	
e- momentum (kf)		9.438	GeV/c
proton angle (th_p)	=	48.384	4 deg
proton momentum (Pf)	=	1.822	GeV/c
4-momentum transfer (Q2)	=	2.086	(GeV/c)^
3-momentum transfer (q)	=	1.822	GeV/c
energy transfer	=	1.111	GeV
x-Biorken	=	1.000	

H(e, e') Cross Section @ Central Kinematics
H(e,e') Elastic Cross Section:
Eb = 10549.0 MeV
kf = 9438.0 MeV
th e = 8.3 deg
d_sig/d_omega_e [ub/sr] (Bosted parametrization) = 2.449E-02
d_sig/d_omega_e [ub/sr] (Arrington parametrization) = 2.409E-02
• Use J. Arrington form-factor parametrization (more recent)

January 2005 (rev. 2007)

Solid Angle

 $\Delta \Omega_e = \Delta \Omega_p \times \frac{d\theta_e}{d\theta_p} \times \frac{d\phi_e}{d\phi_p}$

 $\Delta \theta_n$ [rad]

Solid

Angle"

Hall C spectrometers angular acceptance Ca48 MF Run 16979

0.08 0.96 0.04

 $\Delta \phi_e$ [rad]

SHMS (e-)

 $\Delta \theta_{e}[rad]$

e-

22

21

Electron Cross Section Ratio (e,e') Data

• $\frac{d\sigma}{d\Omega_e} = \frac{N_{events\ into\ solid\ angle}}{N_{incident}*nx*d\Omega_e}$

e,e'											
	loose rad (e,e') cuts										
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm		
26293	410267.38	224189.82	1.83	19.284	1.20E+17	4.35E+23	3.78E-04	2.07E-02	0.859		
				tight r	ad (e,e') cu	ıts					
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm		
2996	53625.03	29303.30	1.83	19.284	1.20E+17	1.74E+23	1.08E-04	2.37E-02	0.983		

CaFe Triplet Ratios

Electron Cross Section Ratio (e,e'p) Data

• $\frac{d\sigma}{d\Omega_e} = \frac{N_{events\ into\ solid\ angle}}{N_{incident}*nx*d\Omega_e}$

e,e'p										
	loose rad (e,e'p) cuts									
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
205041	500254.81	273363.28	1.83	26.61	1.66E+17	4.35E+23	3.78E-04	1.83E-02	0.760	
				tight ra	ad (e,e'p) ci	uts				
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
30823	81242.86	44395.01	1.83	26.61	1.66E+17	1.74E+23	1.08E-04	2.60E-02	1.079	

Electron Cross Section Ratio SIMC

• $\frac{d\sigma}{d\Omega_e} = \frac{N_{events\ into\ solid\ angle}}{N_{incident}*nx*d\Omega_e}$

Simulation										
loose rad (e,e'p) cuts										
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
1034393	442391.78	260091.86	1.70	26.61	1.66E+17	4.35E+23	3.78E-04	1.62E-02	0.672	
				tight ra	ad (e,e'p) cu	uts				
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
116625	74182.28	48370.63	1.53	26.61	1.66E+17	1.74E+23	1.08E-04	2.37E-02	0.986	
				loose r	rad (e,e') cu	its				
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
625496	429131.21	250013.25	1.72	19.284	1.20E+17	4.35E+23	3.78E-04	2.17E-02	0.899	
	tight rad (e,e') cuts									
Raw Count	Norad Count	Rad Count	Rad Corr	q (mC)	Nicident	nx (atoms / cm^2)	ΔΩe (sr)	dσ/dΩe (µb/sr)	Norm	
70140	53874.13	31529.92	1.71	19.284	1.20E+17	1.74E+23	1.08E-04	2.38E-02	0.988	

HMS Proton Efficiency

$$\sigma_{ratio}^{exact} = \sqrt{should \frac{did}{should} (1 - \frac{did}{should}) / should}$$

SHMS Y'tar												
Bin	Should Count	Did Count	σ _{approx}	σ_{exact}	Did/Should	Weight	Numerator					
19	1012	919.8	0.009	0.009	0.91	12216.4	11102.9					
20	960	907.7	0.008	0.007	0.95	18644.5	17629.2					
21	873	845.5	0.006	0.006	0.97	28652.5	27751.1					
22	713	680.0	0.008	0.008	0.95	16171.4	15423.8					
23	669	628.9	0.009	0.009	0.94	11869.2	11157.5					
Total	3215	3062.2	0.004	0.004								

Result		
Unweighted Proton Transmission	Weighted Proton Transmission	Uncertainty
0.952	0.955	0.004

SHMS X'_{tar} vs SHMS Y'_{tar}

SRC HMS & SHMS Collimator Cuts (±2 σ)

SRC Q² & P_m Cuts ($\pm 2\sigma$)

SRC $x_{bj} \& \Theta_{rq}$ Cuts (±2 σ)

Heavy SRC x-Bjorken Heavy SRC In-Plane (recoil) Angle 3 0.06 2.5 0.05 Area Normalized 0.04 Area Normalized 0.03 0.02 0.5 0.01 0 0 0.2 0.4 0.8 1.8 50 0.6 1.2 1.4 2 10 20 30 40 60 70 80 90 100 1.6 θ_{rq} [deg] X_B