Speaker
Description
The Fourier transforms of generalized parton distributions (GPDs) give single-particle spatial densities of the quarks and gluons inside the proton. The physical properties derived from GPDs include the average radius of each partonic component of the nucleon and other quantities. To capture a fuller dynamical picture of the proton’s internal structure, information on the relative position between partons is crucial; two-particle densities give such relative positions between the quarks and gluons in the transverse plane. Connecting the two-body densities to observables, we show that two-particle densities can be defined in QCD with generalized double parton distributions (GDPDs). Using GDPDs, we can describe nucleons’ quark and gluon dynamics through overlap probabilities. Such quantities allow us to extract information from data on the geometric structure of the proton.