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Generalized parton
distributions (GPDs)

X.D. Ji, “Gauge-Invariant Decomposition of Nucleon Spin,”

° Nuclear femtography has the Phys. Rev. Lett. 78 (1997), 610-613
GPDs at its disposal, which
appear in the DVCS cross section
through the Compton Form
Factors (CFFs)

Figures: Simonetta Liuti, “Hadron lon Tea (HIT@LBL) seminar” (2021).



3D Coordinate Space
Representation

* The GPDs, through Fourier
transform, give us spatial
information on the charge,
matter, and radial distributions of

the quarks and gluons inside the
nucleon

* The Fourier transform of GPD H¢
gives the one-body parton
density distribution in b;
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Definition of the GPD
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Fourier transform of the GPD
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Unpolarized parton correlation function; trivial gauge link
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Having projected out the “good components,” introducing a complete set of states, and applying
translational invariance

Hy(2,0,0) = [ dlexdis 50k — (1= 2)P) (|40 | X) (X | 6:0) [ 9
/dzkgb (z,k — A)d(z, k),

Having replaced the sum over final states X with an integral over the four
momentum, ky, of the final state

¢z, k) = (p|v(0) | X).  Vertex function



H,(=,0,t) = / d*k / d?zy d*zly, e~ (k= A) gizrk gx (3! ) (2, 27) =
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We obtain a one-body parton density distribution in the transverse plane, or the
impact parameter dependent distribution (IPPDF)



What do we see about

the proton so far? Parton-

spectator
picture
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* The Fourier transform of the GPD £ oo
Hu for fixed Q? at different values of *
X. 0.2/

* We obtain these distributions by ol
evolving and Fourier transform our
parametrization, fitted to various os | | | | | i
data, within the spectator model. 06 -04 02 00 02 04 06

HMA o 27TN l—g mdklkLa[(m+MX)(m+MX’)+k_2L]_b(l_X/)kLAl
Mx,m 2 o 1—-X D2 (az _b2)3/2

H= = H, (X:(:0)=Hi, (X(H) RO (X,)

B. Kriesten. P. Velie, E. Yeats, F. Y. Lopez, & S. Liuti,
Phys.Rev.D 105 (2022) 5, 056022 F—
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Hg, which
corresponds to the
gluon momentum
distribution.

Fitted in Kriesten
et. al. to lattice
QCD moment
calculations
Varying values of

QZ



Average radii

* Expectation value of the
transverse impact parameter
distance

< 1,'—} >1(X) = -
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Average radii of gluons and quarks
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Average radii of gluons and quarks

Average radii

* Expectation value of the
transverse impact parameter

distance
e Compare to lattice and AdS/CFT | H
results. [ |
b ' Quark radius

* Mamo and |. Zaeed PRD106, 086004

(2022) (S §

* LQCD: Shanahan and Detmold Phys. ST Elony _:
Rev. Lett. 122, 072003 (2019) ST NN TS :
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Proton gluonic mass radius rgy[fm] with D(0)<0




Double-parton
correlations —

r

parton
' picture
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Double parton distributions (DPDs)

d
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DPD defined through its correlation function for parton type i,j=q, g

Fy(@i,2,1) = [ Pbpi(asy +1) ps(as,b) ol 553 i
Quark double parton distribution is related to the two-
parton density through Fourier transform % q?
/b ) 4 p
See, e.g., Diehl, M., Ostermeier, D. & Schafer, A. Elements of a theory for

multiparton interactions in QCD. J. High Energ. Phys. 2012, 89 (2012).
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Two-body densities P (2, b1, b2) = 5 [p(b1)p(ba) — 5 (b1, b2)

. General two-body density
* |n the two-body density framework, the v
Fourier transform of the GPDs act as p2” (z, b1, b2) = p(b1)p(b2)
densities that allow us to define useful Assuming independent particle motion
guantities

(r? (z1,22)) = / dzrfd?R("M r’ Hg, (21, Rom + g)H‘h(I?w Rom — 3)
q1,g2\** 12 [ d?r [ d?RcymHy, (21, Rom + ;_")qu (22, Rea — 15)

Average relative distance
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Two-body densities p3%(z, b1, b2) = = | p(b1)p(b2) — =p(bi, ba)

2 2
. General two-body density
* |n the two-body density framework, the
i py? (z,b1,b2) = p(b1)p(b2)
Fourier transform of the GPDs act as 2 Wi i
densities that allow us to define useful Assuming independent particle motion

guantities
J d®RenAo(r)Hg, (21, Rom + §)Hy, (22, Rem — 5)
J @ReymHy, (21, Rom + 5)Hg, (22, Rem — §)

Oq,.0:(Z1, T2, 1) =

Overlap between two partons
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1
5\/(—7' + Ry + R2)(r + R1 — R2)(r — R1 + Rz2)(r + R1 + R2)

Geometric overlap of two circles, where Ry, R, are the average radii of the
partons q,, q,



Two-body densities — Examples

Suppose we fit the density distribution, which is
obtained through the GPDs, to a Gaussian:

Taking two partons, say two gluon distributions,
at the same X, we obtain the following two-
body density:

We obtain a simple relation for the average
relative distance in such a scenario:
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Two-body densities — Examples

Comparison of overlaps, X = 0.01, Q4 =10GeV*
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Here, we fittheu,dand g
distributions to Gaussians
at some X and Q? to
obtain overlaps between
uand ganddandg.

*Numerical results here
are preliminary



Two-body densities — Examples

Relative distance between two gluons
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We fit the Fourier
transform of Hg, the
gluon distribution, to a
Gaussian at different Q?
for a limited range in X.

*Numerical results here
are preliminary



This work Mantysaari and Schenke
Observable DDVCS J /v production
Picture u, d, g have varying overlaps | u, d valence surrounded by g cloud
Parameter determining size (b2.)1/2 average radius B, hotspot size

<b?>12=1 fm

Overlap = 0.010 fm?

X=0.01, Q2 =10 GeV?
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Conclusion

* The one-body density picture provides incredible insight into partonic
structure

* Moving from a one-body density picture to a two-body density
picture can greatly improve our understanding of the proton’s
internal structure

* Differently from the hotspot formalism (Mantysaari and Schenke),
we use GPDs to describe the relative motion of quarks and gluons



