





### **The Correlated Spatial Structure of the Proton** Two-body densities as a framework for dynamical imaging

Presenter: Zaki Panjsheeri\*

Joshua Bautista\*, Simonetta Liuti\*, Brandon Kriesten\*\*

\*University of Virginia

\*\*Argonne National Laboratory

# Generalized parton distributions (GPDs)

 Nuclear femtography has the GPDs at its disposal, which appear in the DVCS cross section through the Compton Form Factors (CFFs)



X.D. Ji, "Gauge-Invariant Decomposition of Nucleon Spin," Phys. Rev. Lett. 78 (1997), 610-613



Figures: Simonetta Liuti, "Hadron Ion Tea (HIT@LBL) seminar" (2021).

# 3D Coordinate Space Representation

- The GPDs, through Fourier transform, give us spatial information on the charge, matter, and radial distributions of the quarks and gluons inside the nucleon
- The Fourier transform of GPD H<sup>q</sup> gives the one-body parton density distribution in b<sub>T</sub>

$$H_q(x,0,t) = \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \langle p' \mid \bar{\psi}(0) \, \gamma^+ \, \psi(z) \mid p \rangle \big|_{z^+ = \mathbf{z}_T = 0}$$

Definition of the GPD

$$\mathcal{H}^q(X,0,b_T) = \int \frac{d^2 \Delta_T}{(2\pi)^2} H^q(X,0,\Delta_T) e^{-i\Delta_T \cdot b_T}$$

Fourier transform of the GPD

$$H_q(x,0,t) = \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \langle p' \mid \bar{\psi}(0) \, \gamma^+ \, \psi(z) \mid p \rangle \big|_{z^+ = \mathbf{z}_T = 0}$$

Unpolarized parton correlation function; trivial gauge link

$$H_q(x,0,t) = \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \sum_X \langle p' \mid \bar{\psi}_+(0) \mid X \rangle \langle X \mid \psi_+(z) \mid p \rangle \big|_{z^+ = \mathbf{z}_T = 0}$$

Having projected out the "good components," introducing a complete set of states, and applying translational invariance

$$\begin{split} H_q(x,0,t) &= \int d^2 \mathbf{k}_X dk_X^+ \,\delta(k_X^+ - (1-x)P^+) \left\langle p' \mid \bar{\psi}_+(0) \mid X \right\rangle \left\langle X \mid \psi_+(0) \mid p \right\rangle \\ &= \int d^2 \mathbf{k} \, \phi^*(x,\mathbf{k}-\mathbf{\Delta}) \phi(x,\mathbf{k}), \end{split}$$

Having replaced the sum over final states X with an integral over the four momentum,  $k_{\rm X},$  of the final state

 $\phi(x, \mathbf{k}) = \langle p \mid \psi_+(0) \mid X \rangle.$  Vertex function

$$\begin{split} H_q(x,0,t) &= \int d^2 \mathbf{k} \, \int d^2 \mathbf{z}_T \, d^2 \mathbf{z}_T' \, e^{-i\mathbf{z}_T' \cdot (\mathbf{k} - \mathbf{\Delta})} \, e^{i\mathbf{z}_T \cdot \mathbf{k}} \, \tilde{\phi}^*(x, \mathbf{z}_T') \, \tilde{\phi}(x, \mathbf{z}_T) = \\ &= \int d^2 \mathbf{k} \, \int d^2 \mathbf{r} \, d^2 \mathbf{b} \, e^{i\mathbf{r} \cdot \mathbf{k}} \, e^{i(\mathbf{b} - \mathbf{r}/2) \cdot \mathbf{\Delta}} \, \tilde{\phi}^*\left(x, \mathbf{b} - \frac{\mathbf{r}}{2}\right) \, \tilde{\phi}\left(x, \mathbf{b} + \frac{\mathbf{r}}{2}\right) = \int d^2 \mathbf{b} \, e^{i\mathbf{b} \cdot \mathbf{\Delta}} \, \rho(x, \mathbf{b}) \end{split}$$

We obtain a one-body parton density distribution in the transverse plane, or the impact parameter dependent distribution (IPPDF)

What do we see about the proton so far?





# Hu distribution

- The Fourier transform of the GPD Hu for fixed Q<sup>2</sup> at different values of X.
- We obtain these distributions by evolving and Fourier transform our parametrization, fitted to various data, within the spectator model.

![](_page_6_Figure_3.jpeg)

$$H_q^- = H_{q_v}(X,\zeta,t) = H_{M_X,m}^{M_\Lambda}(X,\zeta,t) R_p^{\alpha,\alpha'}(X,t)$$

B. Kriesten. P. Velie, E. Yeats, F. Y. Lopez, & S. Liuti, *Phys.Rev.D* 105 (2022) 5, 056022

![](_page_7_Figure_0.jpeg)

# Gluon distribution

- Hg, which corresponds to the gluon momentum distribution.
- Fitted in Kriesten et. al. to lattice QCD moment calculations
- Varying values of Q<sup>2</sup>

# Average radii

 Expectation value of the transverse impact parameter distance

![](_page_8_Figure_2.jpeg)

# Average radii

- Expectation value of the transverse impact parameter distance
- Compare to lattice and AdS/CFT results.
- Mamo and I. Zaeed PRD106, 086004 (2022)
- LQCD: Shanahan and Detmold Phys. Rev. Lett. 122, 072003 (2019)

![](_page_9_Figure_5.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Figure_1.jpeg)

# Double parton distributions (DPDs)

$$\begin{split} F_{ij}(x_1, x_2, \mathbf{k}_T) &= \frac{p^+}{4} \int \frac{d\mathbf{y}_T}{(2\pi)^2} \, e^{-i\mathbf{k}_T \cdot \mathbf{y}_T} \, \int dz_1^- \int dz_2^- \, e^{ix_1 p^+ z_1^-} \, e^{ix_1 p^+ z_1^-} \\ & \times \left\langle p, \Lambda \left| \bar{\psi} \left( -\frac{z_1}{2} \right) \gamma^+ \psi \left( y + \frac{z_1}{2} \right) \, \bar{\psi} \left( y - \frac{z_2}{2} \right) \gamma^+ \psi \left( y + \frac{z_2}{2} \right) \, \right| p, \Lambda \right\rangle \Big|_{z_1^+ = z_2^+ = y^+ = 0}^{\mathbf{z}_{1,T} = \mathbf{z}_{2,T} = 0} \end{split}$$

DPD defined through its correlation function for parton type i,j = q, g

$$F_{ij}(x_i, x_j, \mathbf{r}) = \int d^2 \mathbf{b} 
ho_i(x_i, \mathbf{y} + \mathbf{b}) 
ho_j(x_j, \mathbf{b})$$

Quark double parton distribution is related to the twoparton density through Fourier transform

See, e.g., Diehl, M., Ostermeier, D. & Schäfer, A. Elements of a theory for multiparton interactions in QCD. *J. High Energ. Phys.* **2012**, 89 (2012).

![](_page_11_Picture_6.jpeg)

## Two-body densities

 In the two-body density framework, the Fourier transform of the GPDs act as densities that allow us to define useful quantities

$$\rho_2^{q,q}(x, \mathbf{b}_1, \mathbf{b}_2) = \frac{1}{2} \left[ \rho(\mathbf{b}_1) \rho(\mathbf{b}_2) - \frac{1}{2} \rho(\mathbf{b}_1, \mathbf{b}_2) \right]$$

General two-body density

$$\rho_2^{q,g}(x, \mathbf{b}_1, \mathbf{b}_2) = \rho(\mathbf{b}_1)\rho(\mathbf{b}_2)$$

Assuming independent particle motion

$$\langle r_{q_1,q_2}^2(x_1,x_2)\rangle = \frac{\int d^2r \int d^2R_{CM} r^2 H_{q_1}(x_1,R_{CM}+\frac{r}{2})H_{q_2}(x_2,R_{CM}-\frac{r}{2})}{\int d^2r \int d^2R_{CM}H_{q_1}(x_1,R_{CM}+\frac{r}{2})H_{q_2}(x_2,R_{CM}-\frac{r}{2})}$$

Average relative distance

## Two-body densities

 In the two-body density framework, the Fourier transform of the GPDs act as densities that allow us to define useful quantities

$$\rho_2^{q,q}(x, \mathbf{b}_1, \mathbf{b}_2) = \frac{1}{2} \left[ \rho(\mathbf{b}_1) \rho(\mathbf{b}_2) - \frac{1}{2} \rho(\mathbf{b}_1, \mathbf{b}_2) \right]$$

General two-body density

$$\rho_2^{q,g}(x,\mathbf{b}_1,\mathbf{b}_2) = \rho(\mathbf{b}_1)\rho(\mathbf{b}_2)$$

Assuming independent particle motion

$$O_{q_1,q_2}(x_1, x_2, r) = \frac{\int d^2 R_{CM} A_o(r) H_{q_1}(x_1, R_{CM} + \frac{r}{2}) H_{q_2}(x_2, R_{CM} - \frac{r}{2})}{\int d^2 R_{CM} H_{q_1}(x_1, R_{CM} + \frac{r}{2}) H_{q_2}(x_2, R_{CM} - \frac{r}{2})}$$

Overlap between two partons

$$\begin{aligned} A_o(r) &= R_1^2 \cos^{-1} \left( \frac{r^2 + R_1^2 - R_2^2}{2rR_1} \right) + R_2^2 \cos^{-1} \left( \frac{r^2 + R_2^2 - R_1^2}{2rR_2} \right) - \\ &\frac{1}{2} \sqrt{(-r + R_1 + R_2)(r + R_1 - R_2)(r - R_1 + R_2)(r + R_1 + R_2)} \end{aligned}$$

Geometric overlap of two circles, where  $R_1$ ,  $R_2$  are the average radii of the partons  $q_1$ ,  $q_2$ 

### Two-body densities – Examples

Suppose we fit the density distribution, which is obtained through the GPDs, to a Gaussian:

Taking two partons, say two gluon distributions, at the same X, we obtain the following twobody density:

We obtain a simple relation for the average relative distance in such a scenario:

$$\rho_1(|\vec{b}_T|) = C e^{-\vec{b}_T^2/a^2},$$

$$\begin{aligned} \rho_2 &= \rho_1 (|\vec{R} + \vec{r}/2|) \rho_1 (|\vec{R} - \vec{r}/2|) \\ &= C^2 e^{-\frac{1}{a^2} (\vec{R}^2 + \vec{r}^2/4) - \frac{1}{a^2} (2Rr\cos(\alpha))} \\ &\times e^{-\frac{1}{a^2} (\vec{R}^2 + \vec{r}^2/4) + \frac{1}{a^2} (2Rr\cos(\alpha))} \\ &= C^2 e^{\frac{-\vec{r}^2}{2a^2}} e^{\frac{-2\vec{R}^2}{a^2}}. \end{aligned}$$

 $\langle r_{gg}^2(x)\rangle^{1/2} = \sqrt{2}a,$ 

## Two-body densities – Examples

![](_page_15_Figure_1.jpeg)

## Two-body densities – Examples

![](_page_16_Figure_1.jpeg)

We fit the Fourier transform of Hg, the gluon distribution, to a Gaussian at different Q<sup>2</sup> for a limited range in X.

\*Numerical results here are preliminary

![](_page_17_Figure_0.jpeg)

# Conclusion

- The one-body density picture provides incredible insight into partonic structure
- Moving from a one-body density picture to a two-body density picture can greatly improve our understanding of the proton's internal structure
  - Differently from the hotspot formalism (Mantysaari and Schenke), we use GPDs to describe the relative motion of quarks and gluons