Speaker
Description
Starting from the Weinberg formalism for the construction of fields for arbitrary spin, we propose an algorithm for the construction of the independent operators that enter the scattering amplitude associated with electromagnetic observables. This procedure is advantageous for the systematic study of the structure of hadrons and nuclei, particularly in the case of spin-dependent observables. As higher spin targets exhibit new features in their hadronic structure, the investigation of these properties can enhance our understanding of the strong force. To demonstrate the efficacy of this method, we apply it to the description of elastic electroscattering on a spin 1 target, such as the deuteron. The results of calculations within Instant and Light-Front forms of dynamics are presented, together with a systematic identification of the electromagnetic form factors and potential extensions of the formalism to hard exclusive processes on the deuteron.