Speaker
Description
Neutrinos in the early Universe decoupled essentially in helicity eigenstates. As they propagate through the Universe, their helicities could be modified via two effects. First, neutrinos with a finite magnetic moment would rotate their spins with respect to their momenta as they encounter cosmic magnetic fields, modifying their helicities. Second, the bending of neutrino's spin by a gravitational field lags the bending of its momentum, again modifying its helicity. We calculate both effects and investigate the implications of the helicity modification on the detection of relic neutrinos using the Inverse Tritium Beta Decay (ITBD) reaction. We find that the ITBD rate depends sensitively on the neutrino mass hierarchy and on the Dirac or Majorana nature of the neutrinos.