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Relic neutrinos from the Big Bang forming the 
cosmic neutrino background (CνB) 

Decoupling occurs at t ~1 sec, T ~1 MeV 

CνB has never been observed ! 
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Cosmic neutrino background (CνB) versus 
cosmic microwave background (CMB)

• CνB took a snapshot of the Universe at a much earlier 
epoch than CMB 

• At least two of the three neutrinos are non-relativistic
• ~20,000,000 of CνB inside you at this moment
• Density of CνB is ~100 times of solar neutrinos 
• Decoupled as flavor eigenstates, now in mass eigenstates 

CMB CνB Relation

Temperature 2.73K 1.9 K               
(1.7 x 10-4 eV)

Tν/Tγ = (4/11)1/3 

=0.714
Decoupling at 3.8 x 105 years ~ 1 sec

Density ~ 411 / cm3  ~ 336 / cm3  nν = (9/11) nγ
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At least 2 relic neutrino mass states are non-relativistic 
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Capture of CνB on radioactive nuclei (positive Q value) 

(S. Weinberg, 1962)
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Look for a mono-energetic 
peak beyond the endpoint of 

tritium beta decay
Positive Q value implies low-energy 

relic neutrinos can be captured ! PTOLEMY experiment 
for this search
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Helicity dependence of the ITBD
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• Relic neutrinos decoupled at a temperature of ~1 MeV, and 
were highly relativistic. Neutrinos were produced 
essentially in h =  ̶ 1 state, and antineutrinos in h = +1 state.

• Rotation of neutrino spin due to transverse matter source is 
less than the rotation of neutrino momentum (gravitational 
lensing of neutrino), changing neutrino helicity.

• Dirac neutrino with non-zero magnetic moment will 
precess in galactic or cosmic magnetic fields, changing 
neutrino helicity.
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Evolution of relic neutrino helicity
(from t ~ 1 sec to t ~ 13.8 billion years)
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spin spin

Helicity reversal 

How would gravity modify the neutrino helicity? 

If a neutrino with negative helicity is emitted upward from
the Earth, it could fall back to the Earth having a positive 
helicity, affecting its weak interaction rate!   
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How would gravity modify the neutrino helicity? 
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Gravitational spin rotation relative to momentum 
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non-relativisticrelativistic

Spin rotation relative to momentum rotation due to gravity 
for relic neutrino mass state 

(depending on neutrino’s mass)
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Rotation of neutrino spins in magnetic fields 
via neutrino magnetic moment 

Standard model processes lead to a non-zero
neutrino magnetic moment 
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The magnetic moment could be much larger (BSM physics)
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XENON1T low energy electron event excess

Possible explanations:
Large neutrino magnetic moment (3.2σ)
Solar axions (3.5σ)
Tritium (in Xe) beta decays

Beyond Standard Model physics??  

magnetic
moment
bounds
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Excess of low energy electron events
1-7 keV over expected background???
Aprile et al. PR D 102, 072004 (2020)



Excess now tracked to tritium contamination   
                                             E. Aprile et al, PRL: 129, 161805 (2022) 

XENONnT = 6 tons of Xe

No indication of BSM neutrino magnetic moment



Neutrino’s spin precesses in B field, but momentum does not
(neutrinos are electrically neutral)

Define spin in rest frame of neutrino.  

Rest frame precession :
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Cosmic magnetic field rotation of neutrino spin

To within uncertainties in magnetic fields, coherence 
lengths, and neutrino masses, spin rotation in cosmic 
magnetic fields ~ galactic fields

0

22
2 29 2

2

22
2 27 0

12Co

Galaxy

smic

0 coherence length of cosmic magnetic field

2 10
1 10

4 10
1 10

g

B

B

gB
G

B
M

m
kpc

pc G

ν

ν

µθ

θ
µ

µ µ

µ

−

−



Λ    
× 



  
  

Λ

Λ  ×   




 




  
=







Spin rotation from gravitational vs. magnetic fields

Rotation in Milky Way
with magnetic moment 
~100 times smaller than 
current upper limit

Gravitational rotation
GB+JCP PRD

Rotation in Milky Way
with standard model
magnetic moment
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ITBD rate depends on the helicity, mass 
and type of relic neutrinos
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ITBD rate for Dirac neutrinos without helicity flip
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ITBD rate for Dirac neutrinos with partial helicity flip
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Baym and Peng, PRL 126, 191803
(2022)



The ITBD has never been observed yet !
To detect the ITBD, use known sources of electron neutrinos

Peng and Baym, PRD  106, 063018 (2022)

Coloma et al. (Snowmass 2020)

51 51

51Solar Neutrinos and Cr sour
V

ces
Cr ee ν+→ + +

3.4 MCi 51Cr source for the experiment  
BEST 

Solar neutrinos



Expected ITBD rates from various sources
Assuming a 100 g tritium target

Peng and Baym, PRD  106, 063018 (2022)

3.0-MCi 51Cr at 50 cm away
from 100 g tritium target



Conclusion

• Relic neutrino helicities could be modified by gravity 
and magnetic fields 

• Detection rate of relic neutrinos via the ITBD reaction is 
sensitive to the Dirac/Majorana nature of neutrino, and to 
the masses of neutrinos

• For Dirac neutrino with normal hierarchy, the ITBD rate 
also depends on neutrino helicity, which is sensitive to 
neutrino magnetic moment

• Detection of relic neutrinos can reveal fundamental 
properties of neutrinos and the Early Universe
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