Speaker
Description
Currently, GaAs-based photocathodes with CsO activation layer serve as the practical source of polarized electrons. However, a thin CsO layer is susceptible to vacuum poisoning. Recent studies have shown that graphene, when applied as a thin layer, can effectively hinder the reaction between reactive gas molecules like oxygen and carbon dioxide. However, the deposition of a monolayer 2D material onto GaAs based photocathodes presents a significant challenge due to the stringent vacuum requirements. The incorporation of a novel technique called intercalation offers a solution to this issue, as alkali atoms can pass through defects in a graphene thin film to create photocathodes with a monolayer graphene protection layer on top. The utilization of the intercalation process for fabricating alkali-based photocathodes with graphene protection shows great promise. In this work, we will present our advancements in incorporating a graphene-based protection layer on different photocathodes.