Please visit Jefferson Lab Event Policies and Guidance before planning your next event:
May 8 – 12, 2023
Norfolk Waterside Marriott
US/Eastern timezone

PARSIFAL: parametrized simulation of triple-GEM and micro-RWELL response to a charged particle

May 8, 2023, 2:15 PM
Chesapeake Meeting Room (Norfolk Waterside Marriott)

Chesapeake Meeting Room

Norfolk Waterside Marriott

235 East Main Street, Norfolk, VA, 23510
Oral Track 3 - Offline Computing Track 3+9 Crossover


Farinelli, Riccardo (INFN Ferrara)


PARSIFAL (PARametrized SImulation) is a software tool that can reproduce the complete response of both triple-GEM and micro-RWELL based trackers. It takes into account the involved physical processes by their simple parametrization and thus in a very fast way. Existing software as GARFIELD++ are robust and reliable, but very CPU time consuming. The implementation of PARSIFAL was driven by the necessity to reduce the processing time, without losing the precision of a full simulation. A series of parameters, that can be extracted from the GARFIELD++ simulation, are set as input to PARSIFAL, which then runs independently from GARFIELD++. PARSIFAL can simulate samples with high statistics much faster, taking into account the various steps (ionization, diffusion, multiplication, signal induction and electronics) from the simple sampling from parameterized distributions. In the case of the micro-RWELL MPGD, the effect of the high resistivity layer on the charge spread on the anode was introduced, following M.S. Dixit and A. Rankin treatment.
PARSIFAL was used to simulate triple-GEM chambers and the results were tuned to match experimental data from testbeams. In this case the adopted electronics was APV-25 readout by SRS system, which has been simulated in the code. The same procedure was later applied to micro-RWELL chambers, readout this time by the TIGER ASIC and the GEMROC system. This new electronics was added to PARSIFAL code and a tuning of the simulated-to-real data was performed. A presentation of the full code will be given in this contribution, setting the focus on the latest implementations and on a first comparison with experimental data from micro-RWELL.

Consider for long presentation No

Primary authors

Lavezzi, Lia (Università di Torino) Farinelli, Riccardo (INFN Ferrara)

Presentation materials

Peer reviewing