PARSIFAL parametrized simulation of triple-GEM and µ-RWELL response to a charged particle

R. Farinelli on behalf of the working group

CHEP2023 - Norfolk (VA) - 2023.05.08

Outline

1. <u>Starting point: GARFIELD++</u>

- 2. From the parametrization to PARSIFAL
- 3. Detector simulation

MPGD detectors: triple-GEM and μ -RWELL

Micro Pattern Gaseous Detector measure the ionization signal released by charged particle and it reconstruct time and position. The detection technique is similar:

Triple-GEM peculiarities:

three amplification stages

 μ -RWELL peculiarities:

single stage amplification resistive layer before the readout

CHEP2023, May 2023 - Norfolk

State of art for gas detectors simulation

<u>Garfield++</u> is a toolkit for the detailed simulation of detectors which use gases or semiconductors as sensitive medium.

Ionisation -> Heed generates ionisation patterns of fast charged particles

Electric fields -> interfaces with the finite element programs (Ansys, Elmer, Comsol and CST) which can compute approximate fields in nearly arbitrary 3D configurations with dielectrics and conductors

Transport of electrons -> Magboltz is used for computing electron transport and avalanches in nearly arbitrary gas mixtures

We tried to run the complete simulation of a triple-GEM but it took about **one day** for a triple-GEM

PARSIFAL in a nutshell

PARSIFAL in a nutshell

- 1. Define the main physical processes in an MPGD
- 2. Simulate the single process in **Garfield++** and parametrized it
- 3. Sample from the parametrization and **check** the agreement with Garfield++ in each process
- 4. Built **PARSIFAL** from the parametrization of main processes
- 5. Simulate the detector response and **tune** it with experimental data

This approach reduces the time consumption of a single event to 1-2 seconds. Let's check the goodness of the simulation.

Ionization

Electron drift

Amplification

Resistive

Induction

Readout

Reconstruction

The next slides will summaries

the parametrization

of the main processes

involved in an MPGD

CHEP2023, May 2023 - Norfolk

Drift gap

 The ionization position is different from electron to electron → z dependence of spread and sigma of position distribution

• Analogous behavior for time distribution

The parametrization

Gain fluctuations → Polya distribution

[G. lakovidis PhD Thesis, Research and Development in Micromegas Detector for the ATLAS Upgrade]

$$P(G) = C_0 \frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \left(\frac{G}{\overline{G}}\right)^{\theta} \exp\left[-(1+\theta)\frac{G}{\overline{G}}\right]$$

 \overline{G} = intrinsic gain mean value $\theta \rightarrow$ connected to variance

ELSEVIER

The parametrization

Nuclear Instruments and Methods in Physics Research A 566 (2006) 281-285

Available online at www.sciencedirect.com

ScienceDirect

CHEP2023, May 2023 - Norfolk

The parametrization

Compute noise \rightarrow \forall time bin, sample from Gaussian (μ , σ) \rightarrow add to the charge

Now simulate a lot of events

and

compare the detectors performance with a testbeam

to

tune the simulation on the experimental data

RD51 testbeam • GOLIATH dipole magnetic field • H4 beam line, SPS-NA (CERN) • 150 GeV/c muons

• HV: 275/275/275 V

• fields: 1.5/2.75/2.75/5 kV/cm

magnetic field off or on (B = 1T)

• incident angle: 0°, 5°, 10°, 15°, 20°, 30°, 45°

Triple-GEM tuning: gain and diffusion

Let's focus on the tuning on the **detector response** agreement between data and simulation.

Check the consistency between simulation and real data, due to various approximations applied.

Measure **four reconstructed variables of interest** to tune the detector gain and the electron diffusion.

The performance study is performed **as a function of the incident angle** to access at the behavior of interest.

triple-GEM specifics

• gas: Ar:i-C4H10 (90:10)

• planar triple-GEM, 10 x 10 cm²

double view readout, APV-25

µ-RWELL tuning: resistivity

The μ -RWELL tuning has to confirm the **charge sharing** simulation technique.

The **charge spread** depends on the resistivity (or Tau) of the μ -RWELL and this impact on the number of strips above threshold.

Once the **Tau** (resistivity) is **tuned** on the data then a check on the four variables is performed.

µ-RWELL tuning: resistivity

The μ -RWELL tuning has to confirm the **charge sharing** simulation technique.

The **charge spread** depends on the resistivity (or Tau) of the μ -RWELL and this impact on the number of strips above threshold.

Once the **Tau** (resistivity) is **tuned** on the data then a check on the four variables is performed.

Conclusion

PARSIFAL, a simulation tool for **MPGD**: triple-GEM and µRWELL.

Its output has been **tuned** with experimental results and the agreement is good.

PARSIFAL **time consumption is much lower** than GARFIELD++ one, due to less detail in physics process description.

Fast simulation of MPGD with similar configurations can be used to study the detector performance and physics decay benchmarks.

Actually PARSIFAL is used to simulate several MPGD detectors:

- 1. Cylindrical Triple-GEM as Inner Tracker for BESIII/BEPCII
- 2. Cylindrical µ-RWELL as Inner Tracker for tau-charm factories
- 3. Pre-shower and muon system for IDEA/FCC-ee

This research is funded by the following Grants agreement ID

AIDAinnova: 101004761 EURIZON H2020: 871072 FEST: 872901

