JLab AI Town Hall
→
US/Eastern
David Lawrence
(Jefferson Lab),
Malachi Schram
(Thomas Jefferson National Accelerator Facility)
Description
-
- 1
-
2
Deeply Learning deep inelastic scattering kinematicsSpeaker: Markus Diefenthaler (Jefferson Lab)
- 3
-
4
InclAISpeaker: Gabriel Niculescu (JMU)
- 5
- 6
- 7
- 8
-
9
Track ID for ClustersSpeaker: Gagik Gavalian (Jefferson Lab)
-
10
De-noisingDrift Chamber using AutoencodersSpeaker: Gagik Gavalian (Jefferson Lab)
-
11
CLAS12 Level-3 triggerSpeaker: Gagik Gavalian (Jefferson Lab)
-
12
AI for reweighting MC di-hadron events for CLAS and CLAS12Speaker: Sebouh Paul (UC Riverside)
-
13
Training Classifiers with Autoencoder Event Generators in GlueXSpeaker: Sean Dobbs (Florida State University)
-
14
μ/π/e PIDSpeaker: David Lawrence (Jefferson Lab)
-
15
Solving the inverse problem at the event levelSpeaker: Nobuo Sato (Jefferson Lab)
-
16
Physics-Aware Generative Adversarial Networks for Physics Event Generation
-
17
Neural Network Simulation of Detector Efficiency
-
18
Unfolding of the CLAS detector with OmniFoldSpeaker: Luca Marsicano (INFN Genova)
-
19
ML to access multi-d xsection in hadron physicsSpeaker: Marco Battaglieri (JLab/INFNGE)
-
20
Validation of 2 pion cross section extractionSpeaker: Evgeny Isupov (Moscow State U.)
-
21
GAN uncertainty quantification in CLAS 2pi channel data analysis
-
22
Validation of event generators with extraction of physics observablesSpeaker: Astrid Hiller Blin (Jefferson Lab)
-
23
t-SNE analysis
-
24
Application of t-SNE analysis to 2 pion data analysisSpeaker: Marco Battaglieri (JLab/INFNGE)
-
25
SAUCER: a VAE-based generative algorithm
-
26
Detector Design Optimization for ECCESpeaker: Fanelli Cristiano (MIT)
-
27
AIPWASpeaker: William Phelps (Christopher Newport University/Jefferson Lab)
-
28
Anomalous Resonance Identification with AutoencodersSpeaker: William Phelps (Christopher Newport University/Jefferson Lab)
-
29
Modeling Magnetic Fields with deep neural networksSpeaker: William Phelps (Christopher Newport University/Jefferson Lab)
-
30
Modern extraction of Compton Form Factors using global fits with artificial neural networks.Speaker: Zulkaida Akbar (University of Virginia)
-
31
Further constraints with simultaneous fitting in DVCSSpeaker: Liliet Calero Diaz
-
32
Improvement in polarization measurements using artificial intelligence
-
33
Machine Learning for FCAL-II Shower Classification
-
34
A.I.-supported Research and Development of Novel Composite Aerogel Materials for Nuclear Physics DetectorsSpeaker: Fanelli Cristiano (MIT)