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Encoder

The Encoder’s job is to 
reduce the dimensionality 
of the feature space.
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Decoder

The Decoder’s job is to take this 
encoded latent representation 
and reconstruct the original 
feature space.
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Anomalous Resonance Identification?

▪ The goal is to Identify several resonances with only 
one known resonance. 

▪ I will be using exclusively the decaying photons to 
allow the autoencoder more freedom and flexibility 
to encode the resonance.

▪ In this method we intentionally overtrain a specific 
known resonance, such as π0, during training.

▪ By doing this, the latent representation of resonances 
will only make sense for our overtrained resonance.
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π0-mesons decay photons

Reconstructed π0-mesons decay photons



Training Data
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Latent Space – Reduced Dimensionality

Encoder Decoder

mx my mz e

π0-mesons decay photons
(500,000)

Reconstructed 
π0-mesons decay photons

mx my mz e
mx my mz e
mx my mz e



Theory
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π0-meson decay photons

A well reconstructed π0-meson decay photons

η-mesons decay photons

? Jumbled mess
(Anomaly!)
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• After Training, we can plot a histogram of 
the photon pair’s reconstruction loss.

• Now let’s eyeball a threshold to justify an 
“Anomaly”. 

Results



12
CNU AI - Andru Quiroga

• After Training, we can plot a histogram of 
the photon pair’s reconstruction loss.
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“Anomaly”. 
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• After Training, we can plot a histogram of 
the events and their reconstruction loss.

• Now let’s eyeball a threshold to justify an 
“Anomaly”.

• Adding in some new data: η-mesons 

threshold = 0.003

Results
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threshold = 0.003

We can very crudely classify using this threshold. 
By doing so we get the following results:

(93%)

(93%)(7%)

(7%)

Results
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threshold = 0.003

We can also take out a portion of the loss space 
for ‘uncertainty’:

(95%)

(95%)(5%)

(5%)

threshold = 0.003

Results

Tr
u

e

Labeled



16
CNU AI - Andru Quiroga

threshold = 0.003

Let's see what happens when we add another 
Resonance:

(93%)

(93%)(7%)

(7%)

threshold = 0.003

(95%)

(95%)(5%)

(5%)

Does this expand beyond 2 Resonances? 

Tr
u

e

Labeled

(91%)

(91%)

(97%)



Summary

▪ Unsupervised classification of decays with only being trained on one 
resonance
– With multiple categories!

▪ What can we do with this?
– Would it be possible to use as a way of selecting signal?

– Is it possible to find evidence of new resonances using this technique?

▪ Preliminary work  with promising results!
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