
Magnetic Fields with deep
neural networks

Andru Quiroga

The Magnetic Field Project

▪ The production magnetic field was ~1.5 GB
(2019) for both solenoid and torus
fields combined.

▪ Can a neural network model be faster
than the conventional model or provide
other benefits where the tradeoff could be
worth it?

▪ Challenges:
– Model must be fast and lightweight

– Must be implemented within CLAS12 Java
framework

3CNU AI - Andru Quiroga

Approximating a Function with NN

▪ Based on the universal
approximation theorem, any
function can be described by
artificial neural networks

– Especially smooth continuous
magnetic fields

▪ The magnetic field seemed
like an ideal candidate to
start experimenting with

▪ Our network architecture
consists of 3 inputs and
outputs for the position
and field vector respectively

4

x

y

z

Bx

By

Bz

Input: Position Output: B-Field

CNU AI - Andru Quiroga 4

What is a Generator?

▪ Can only be used when generating data from a function or have
other means to be able to generate infinite training data.

▪ Python Generator functions allow you to declare a function that
behaves like an iterator, that doesn’t store the values in memory.

CNU AI - Andru Quiroga 5

Reading the Magnetic field binary file
in Python

CNU AI - Andru Quiroga 6

With Dr. Heddle’s binary Magnetic Field, I can read it into the
script and create an interpolator provided by SciPy.

This combined with python generators, I can create an infinite
training set for my neural network.

Current Best Model: 16x128 layers (1.4MB)

CNU AI - Andru Quiroga 7

±1.3G mse

±1.5G mse

Performance Benchmark Results

▪ Initial benchmarks on the
CPU/GPU show that the
inference time for a single
position is extremely slow
– Maybe there is some initialization

that slows things down within the
frameworks

▪ Batching refers to
using TensorFlow to predict
many values at one time.
– which is not optimal for

swimming/tracking.

CNU AI - Andru Quiroga 8

0.226

126.944

0.129

331.679

0.12
0

50

100

150

200

250

300

350

In
fe

re
n

ce
 t

im
e

 (
μ

s)

15,000,000 Samples

Dr. Heddle's TF Non-batched* TF Batched TF-gpu Non-batched* TF-gpu Batched
*benchmarked with lesser amount of samples

Prediction with Matrix Math

CNU AI - Andru Quiroga 9

▪ DL4J/Keras/Tensorflow inference times are very fast – by industry
standards (1 ms)

▪ In order to improve the inference time, we explored multiple options.

▪ Solution: Use Efficient Java Matrix Library (EJML)
– Propagate values ourselves

– Thread safe! Used in CLAS12 reconstruction

Performance Benchmarks and Future Prospects

CNU AI - Andru Quiroga 10

0.226

0.529

0.712

0.129 0.12

0

0.2

0.4

0.6

0.8

In
fe

re
n

ce
 t

im
e

(μ
s)

15,000,000 Samples

Inference Times for Test Model
(2x20) (32 KB model)

Dr. Heddle's EJML

EJML wActivation TF Batched

TF-gpu Batched

• With a simplified model the inference time is 3.2x slower
the conventional algorithm and 2-300x faster than using
Keras/TensorFlow.

• Could be useful for Open Science Grid transfers to save
bandwidth and time.

• It could also be used to initialize a “conventional” magnetic
field in memory rather than reading in a file.

• Could also be useful for online reconstruction on FPGA Or
when CPUs ship with small FPGAs on-die.

