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The Magnetic Field Project

▪ The production magnetic field was ~1.5 GB 
(2019) for both solenoid and torus 
fields combined.

▪ Can a neural network model be faster 
than the conventional model or provide 
other benefits where the tradeoff could be 
worth it?

▪ Challenges:
– Model must be fast and lightweight

– Must be implemented within CLAS12 Java 
framework
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Approximating a Function with NN

▪ Based on the universal 
approximation theorem, any 
function can be described by 
artificial neural networks

– Especially smooth continuous 
magnetic fields

▪ The magnetic field seemed 
like an ideal candidate to 
start experimenting with

▪ Our network architecture 
consists of 3 inputs and 
outputs for the position 
and field vector respectively
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What is a Generator?

▪ Can only be used when generating data from a function or have 
other means to be able to generate infinite training data.

▪ Python Generator functions allow you to declare a function that 
behaves like an iterator, that doesn’t store the values in memory.
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Reading the Magnetic field binary file 
in Python
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With Dr. Heddle’s binary Magnetic Field, I can read it into the 
script and create an interpolator provided by SciPy. 

This combined with python generators, I can create an infinite 
training set for my neural network.



Current Best Model: 16x128 layers (1.4MB)
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±1.3G mse

±1.5G mse



Performance Benchmark Results

▪ Initial benchmarks on the 
CPU/GPU show that the 
inference time for a single 
position is extremely slow
– Maybe there is some initialization 

that slows things down within the 
frameworks

▪ Batching refers to 
using TensorFlow to predict 
many values at one time. 
– which is not optimal for 

swimming/tracking.
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Prediction with Matrix Math
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▪ DL4J/Keras/Tensorflow inference times are very fast – by industry 
standards (1 ms)

▪ In order to improve the inference time, we explored multiple options.

▪ Solution: Use Efficient Java Matrix Library (EJML)
– Propagate values ourselves

– Thread safe! Used in CLAS12 reconstruction



Performance Benchmarks and Future Prospects
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• With a simplified model the inference time is 3.2x slower 
the conventional algorithm and 2-300x faster than using 
Keras/TensorFlow.

• Could be useful for Open Science Grid transfers to save 
bandwidth and time.

• It could also be used to initialize a “conventional” magnetic 
field in memory rather than reading in a file.

• Could also be useful for online reconstruction on FPGA Or 
when CPUs ship with small FPGAs on-die.


