

AI/ML on FPGA

Sergey Furletov Jefferson Lab

JLab AI Town Hall

26 July 2021

Sergey Furletov

Motivation

- Concepts of trigger-less readout and data streaming will produce large data volumes being read from the detectors.
- Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures.
- The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing.

Level 1 works with Regional and sub-detector trigger primitives, typically uses custom hardware with ASICs or FPGAs (decision ~4 μ s)

High Level Trigger (HLT), uses commercial CPUs to process the filtered data in software. (decision ~100 000 μ s)

Using ML on FPGA many tasks from HLT can be performed at Level 1

LHC Real Time Data Processing 10⁻⁷ s Collision rate 10⁹ Hz Channel data sampling at 40 MHz Level-1 selected events 10⁵ Hz **Particle identification** (High $p_{\tau} e, \mu$, jets, missing E_{τ}) Local pattern recognition · Energy evaluation on prompt macro-granular information 10⁻⁶ s Level-2 selected events 10³ Hz Clean particle signature (Z, W, ...) Finer granularity precise measurement Kinematics. effective mass cuts and event topology Track reconstruction and detector matching 10⁻³ s Level-3 events to tape 10..100 Hz Physics process identification Event reconstruction and analysis 10-0 **Continuous Filtering**

Fast Machine Learning, 10-13 September 2019, Fermilab

2

2019

Sep 10,

Triggering

5

Overview

I.Ojalvo

Hall-D ML filter design test setup

<u> Team :</u>

F. Barbosa, L. Belfore (ODU), C. Dickover, C. Fanelli (MIT), Y. Furletova, L. Jokhovets (Jülich Research Centre, Germany), D. Lawrence, D. Romanov

7/26/21

Sergey Furletov

ML in EIC readout

- The correct location for the ML on the FPGA filter is called "FEP" in this figure.
- This gives us a chance to reduce traffic earlier.
- Allows us to touch physics: ML brings intelligence to L1.
- However, it is now unclear how far we can go with physics at the FPGA.
- Initially, we can start in pass-through mode.
- ✤ Then we can add background rejection.
- Later we can add filtering processes with the largest cross section.
- In case of problems with output traffic, we can add a selector for low cross section processes.
- The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.

- 4

ML FPGA Core for TRD PID

Jefferson Lab

• Using HLS significantly decreases development time. (at the cost of lower efficiency of use of FPGA resources)

7/26/21

- 5

GEMTRD tracking with HLS4ML package

• A package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning models in FPGAs.

ML for Calorimeter e/pi separation

Classification	Last-layer activation	Loss function
single-label	softmax	categorical_crossentropy
multi-label (scores for candidates)	sigmoid	binary_crossentropy

Examples of events with e and π^- showers and μ^- passing through.

by D. Romanov

121

12|

1|

Latency = 60ns

1| function

Outlook

- An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction based on physics at the early stage of data processing.
- The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
- FPGA provides extremely low-latency neural-network inference on the order of 100 nanoseconds.
- The unified design will make it easy to increase the processing power by adding ML algorithms:
 - from the pass-through to trigger mode and finally to physics filter mode.
- The ultimate goal is to build a real-time event filter based on physics signatures.

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS.

Published in 2007

Measurement of multijet events at low \$x_{Bj}\$ and low \$Q^2\$ with the ZEUS detector at HERA

T. Gosau

Jefferson Lab

ccelerator Facility

Backup

9

GEMTRD offline analysis

• For data analysis we used a neural network library provided by root /TMVA package : MultiLayerPerceptron (MLP)

- All data was divided into 2 samples: training and test samples
- Top right plot shows neural network output for single module:

Red - electrons with radiator

Blue - electrons without radiator

GEMTRD neural network optimization

Full size neural network, accuracy-optimized.

±	L		L		L
Name	BRAM_18K	DSP48E	FF	LUT	URAM
+ DSP	–	2			+ –
Expression	i –	-	0	24	i –i
FIFO	-	-	-	–	-
Instance	19	692	3737	16446	-
Memory	2	-	0	0	-
Multiplexer	-	-	–	36	-
Register	-	-	1532		-
Total	21	694	5269	16506	0
Available SLR	1440	2280	788160	394080	320
Utilization SLR (%)	1	30	~0	4	0
Available	4320	6840	2364480	1182240	960
	~0	10	~0	1	0
-					

DSP utilization 10%

Size-optimized neural network

+ Timing * Su	g (ns): ummary:								
(Clock	Targe	t	Estima	ated	Uncerta	ainty		
ap_	_clk	5.0	0	3.	883	+ 	0.62		
+ Latency (clock cycles): * Summary:					Late	ency =	85ns		
 m:	Latency in ma	/ I ax mi	nte n	rval max	Pi	peline Type			
Ļ	17		3	3	fu	nction +			
+	Name		+-	BRAM_	18K	DSP48E	FF	LUT	URAM
DSP Expressio	on		 		- - -	2	- 0	_ 24	- -
Instance Memory					- 2	177 -	3132 0	10696 0	- -
Register	xei		ļ		-	-	_ 1423		-
Total			1		2	179	4555	10801	0
Available	e SLR			14	440	2280	788160	394080	320
Utilizat:	ion SL	R (%)		~0		7	~0	2	0
Available	e			4	320	6840	2364480	1182240	960
Utilizat:	ion (%)		~0		2	~0	~0	0

DSP utilization 2%

Compute Node (PXD, Belle II)

- The pixel detector of Belle II with its ~ 8 million channels will deliver data at rate of 22 Gbytes/s for a trigger rate of 30 kHz
- A hardware platform capable of processing this amount of data is the ATCA based Compute Node. (Advanced Telecommunications Computing Architecture).
- A single ATCA crate can host up to 14 boards interconnected via a full mesh backplane.
- Each AMC board is equipped with 4 Xilinx Virtex-5 FX70T FPGA.

Sergey Furletov

ADC based DAQ for PANDA STT

Level 0 Open VPX Crate

ADC based DAQ for PANDA STT (one of approaches):

- 160 channels (shaping, sampling and processing) per payload slot, 14 payload slots+2 controllers;
- totally 2200 channels per crate;
- time sorted output data stream (arrival time, energy,...)
- noise rejection, pile up resolution, base line correction, ...

 All information from the straw tube tracker is processed in one unit.

- Allows to build a complete STT event.
- This unit can also be used for calorimeters readout and processing.
- The design makes it easy to add ML-FPGA to data processing.

