Indico is back online after maintenance on Tuesday, April 30, 2024.
Please visit Jefferson Lab Event Policies and Guidance before planning your next event: https://www.jlab.org/conference_planning.

Sep 5 – 9, 2022
online
US/Eastern timezone
Thank you to all the participants for a great QNP2022!

Compton scattering on liquid deuterium target at HI$\gamma$S: Measuring nucleon polarizabilities

Sep 7, 2022, 1:45 PM
25m
online

online

FSU, Tallahassee, FL, USA

Speaker

Danula Godagama (University of Kentucky)

Description

The electromagnetic scalar polarizabilities ($\alpha$,$\beta$) are fundamental structure constants of the nucleon, and precise experimental measurements of these are vital for a complete understanding of the nucleon’s internal structure. The scalar polarizabilities can be accessed via Compton scattering reactions on light nuclei targets like $^1$H, $^2$H, and $^3$He. Such cross section measurements can be used to benchmark the chiral effective field theory($\chi$EFT) models. To this end, a series of Compton scattering experiments is underway at the High Intensity Gamma-Ray Source (HI$\gamma$S) at Triangle Universities Nuclear Laboratory, with the goal of extracting the electromagnetic scalar polarizabilities of the neutron ($\alpha_n$, $\beta_n$). The recently completed experiment performed Compton scattering on a liquid deuterium target at incident photon energies of 61 and 81 MeV. Backward-angle scattering cross sections were measured using two large-volume high-resolution NaI detectors. The combined effect of the quasi-monoenergetic beam at HI$\gamma$S and the excellent energy resolution of these detectors was adequate to resolve the inelastic contribution at two backward angles ($115^{\circ}$, $150^{\circ}$). Preliminary elastic and inelastic cross section data at 61 MeV will be presented.

speaker affiliation University of Kentucky

Primary author

Danula Godagama (University of Kentucky)

Presentation materials