Speaker
Description
The Muon g-2 Experiment at Fermi National Accelerator Laboratory was designed to measure the anomalous magnetic moment of the muon, a, with a target precision of 140 parts-per-billion; a four-fold improvement over the former measurement from the early 2000s at Brookhaven National Laboratory. The experiment was motivated by the ~3.5 standard deviation between the BNL result and the Standard Model prediction of a; which could be a hint of new physics. The first result at Fermilab from the Run-1 data taking period has achieved an uncertainty of 460 parts-per-billion and confirmed the BNL discrepancy, further increasing the tension with the Standard Model. The talk will give an overview of the status of the Standard Model prediction, the experimental technique, key aspects of the measurement, and the data analysis.