

RESULTS FROM THE MUON G-2 EXPERIMENT IN THE LIGHT OF HADRONIC PHYSICS

PETER WINTER High Energy Physics Division Argonne National Laboratory

SHORT INTRO & MOTIVATION FOR MUON g-2

A PRIMER: MAGNETIC MOMENTS

$$\vec{\mu} = g \frac{q}{2m} \vec{S} \qquad a = \frac{g-2}{2}$$

- Classical current loop in B field: g = 1
- Stern-Gerlach and atomic spectroscopy: $g_e \approx 2$
- Dirac theory of elementary spin- $\frac{1}{2}$ particle: g = 2
- Kusch and Foley: $g_e = 2.00238(6) \neq 2$
- Schwinger's blackboard: $g_e = 2 + \alpha/\pi = 2.00232$
- Garwin (1957): g_μ = 2.00 ± 0.10 (±50,000 ppm)
- CERN I (1965): a_µ = 0.001 162(5) (±4,300 ppm)

MUONS IN A STORAGE RING (NO E FIELD YET)

- Cyclotron frequency: $\omega_c = \frac{e}{m \gamma} B$
- Spin precession frequency:

$$\omega_{S} = \frac{e}{m \gamma} B (1 + \gamma a_{\mu})$$

Larmor + Thomas precession

$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_c = \frac{e}{m} \left(a_\mu \vec{B} \right)$$

MUONS IN B AND E FIELD

• In presence of additional E-field (neglecting β ·B and EDM terms):

- Measuring the anomalous moment \mathbf{a}_{μ} requires both
 - 1. the spin precession frequency ω_a
 - 2. the magnetic field **B**

THE BOTTOM LINE UPFRONT...

HOW ABOUT THEORY? A LOT OF PROGRESS OVER THE LAST YEARS...

Muon g-2 theory initiative workshop in memoriam Simon Eidelman

June 28-July 2, 2021 Virtual meeting

At the conference dinner in PhiPsi at BINP in Feb 2019

INT Workshop INT-19-74W

CURRENT DISCREPANCY BETWEEN SM PREDICTION AND EXPERIMENT

 $a_{\mu}^{SM} = 0.00116591810 (43)$ $a_{\mu}^{Exp} = 0.00116592061 (41)$

Theory Initiative: Phys. Rep. 887 (2020)

Experimental value (FNAL + BNL)

$$\delta a_{\mu} = (251 \pm 59) \times 10^{-11} (4.2\sigma)$$

CURRENT RECOMMENDED VALUE FROM THE THEORY INITIATIVE

a_μSM = 0.00116591810 (43)

- Hadronic contributions dominate theory uncertainty
- Two main methods for HVP and HLbL:
 - Dispersive, data driven approach using experimental cross-sections
 - Lattice QCD calculations

HADRONIC LIGHT-BY-LIGHT

- Dominant contributions (~75% of total) well quantified with ~6% uncertainty
- Ongoing work on subleading contributions, which dominate current uncertainty
- Lattice QCD and new dispersive approach: <10% uncertainty by 2025 possible
- Hadronic light-by-light scattering not expected to solve overall discrepancy

HADRONIC VACUUM POLARIZATION

- Theory WP 2020 used conservative merging procedure using data driven approaches only: $a_{\mu}^{\text{hvp,LO}} = (693.1 \pm 4.0) \times 10^{-10} [0.6\%]$
- Lattice QCD average: $a_{\mu}^{\text{hvp,LO}} = (711.6 \pm 18.5) \times 10^{-10}$ [2.6%]
- Lots of current work ongoing to understand possible discrepancy, comparison of intermediate time regions
- Data-driven approach can reach 0.3% by ~2025 (BaBar, SND, CMD-3, BESIII,...)
- If Lattice results are consistent, then <0.5% possible by 2025

OVERVIEW OF THE E989 MUON g-2 EXPERIMENT AT FERMILAB

FERMILAB ACCELERATOR COMPLEX: 20 TIMES MORE MUONS

Some key ingredients:

- Long beamline to collect muons from pion decay
- Reduced hadronic flash
- 4x higher fill frequency than at BNL

MUON INJECTION & STORAGE: STORAGE RING MAGNET

- Superconducting magnet at 1.45T
- Shim toolkit:
 - 48 top / bottom hats to tune dipole
 - 800 wedge shims to tune dipole
 - edge shims to tune quad and sextupole
 - About 9000 iron foils to fine tune field
- Power supply feedback to stabilize dipole
- 200 tunable coils to shim average multipoles

Achieved ~2.5 better homogeneity than BNL

MUON INJECTION & STORAGE: INFLECTOR MAGNET

MUON INJECTION & STORAGE: KICKER MAGNET

Kicker plates¹⁶

- 3 kicker magnets change muons' trajectories onto stored orbits
- Deliver pulse in <149 ns (muon revolution time)

MUON INJECTION & STORAGE: ELECTROSTATIC QUADRUPOLES

- Main B field provides radial focusing
- Four electrostatic quadrupoles for vertical focusing
- Also used to scrape the beam after injection
- Added a new RF system to reduce coherent betatron oscillation

Quadrupole plates

MEASURING THE MUON SPIN PRECESSION: CALORIMETER & LASER CALIBRATION

- 24 calorimeter stations detect the muon decay positrons:
 - 54 PbF2 crystals per station
 - SiPM readout
 - 800 MSPS digitization
- Laser calibration system:
 - Each crystal receives laser pulse
 - Demonstrated gain corrected to 10⁻⁴/h

MEASURING THE MAGNETIC FIELD: NUCLEAR MAGNETIC RESONANCE PROBES

- 378 NMR probes in 72 stations track the field drift
- One field mapping trolley with 17 NMR probes to map field in storage region

 Water-based calibration probe to provide an absolute reference

MEASURING THE MUON DISTRIBUTION: STRAW TRACKERS

A VIEW INSIDE THE VACUUM CHAMBERS

Video editing: Simon Corrodi

MEASURING ω_a AND $\widetilde{\omega}'_p$: THE BIG PICTURE

MEASURING THE MAGNETIC FIELD USING PROTON NUCLEAR MAGNETIC RESONANCE

$$\omega_{a} = e/m_{\mu} a_{\mu} B$$

$$\mu_{e} = g_{e} \frac{e\hbar}{4m_{e}} \int B = \frac{\hbar \omega_{p}(T)}{2 \mu_{p}(T)}$$

$$a_{\mu} = \frac{\omega_{a}}{\widetilde{\omega}_{p}'(T_{r})} \frac{\mu_{p}'(T_{r})}{\mu_{e}(H)} \frac{\mu_{e}(H)}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}$$

Determined by the experiment ω_a Anomalous spin precession frequency

 $\widetilde{\omega}_p'(Tr)$ Larmor frequency of shielded proton in spherical water sample weighted by the muon distribution

$\frac{\mu_p'(Tr)}{\mu_e(H)}$	Magnetic moment ratio of proton in spherical water sample at T_r =34.7C and electron in hydrogen known to 10.5 ppb [Metrologia 13, 179 (1977)]
$\frac{\mu_e(H)}{\mu_e}$	Bound-state QED correction (exact) [CODATA]
$rac{m_{\mu}}{m_{e}}$	Mass ratio known from muonium hyperfine splitting experiment and QED to 22 ppb [PRL 82, 711 (1999)
$\frac{g_e}{2}$	Electron g-factor known from quantum cyclotron spectroscopy to 0.38 ppt [PRA 83, 052122 (2011)

PHYSICAL REVIEW LETTERS

Highlights

Accepted

Collections Authors

Referees Search Press About

Recent

ON THE COVER

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm April 7, 2021

New muon magnetic moment data from a Fermilab experiment (red) combined with previous Brookhaven National Lab data (blue) is in 4.2 σ tension with the value calculated by the Muon g-2 Theory Initiative (green). Selected for a Viewpoint in *Physics* and an Editors' Suggestion.

B. Abi *et al.* (Muon *g* – 2 Collaboration) Phys. Rev. Lett. **126**, 141801 (2021)

Issue 14 Table of Contents More Covers

Current Issue

Staff

Vol. 126, Iss. 14 - 9 April 2021

a

View Current Issue

Previous Issues

Vol. 126, Iss. 13 — 2 April 2021 Vol. 126, Iss. 12 — 26 March 2021 Vol. 126, Iss. 11 — 19 March 2021 Vol. 126, Iss. 10 — 12 March 2021

Browse All Issues »

Measured g-2 frequency

 $\frac{\omega_a^m}{<\omega_p(x,y,\phi)}$

Magnetic field

Measured g-2 frequency

Measured g-2 frequency

MEASURING ω_a AND $\widetilde{\omega}'_p$: THE RUN-1 ANALYSIS DETAILS AND RESULTS

	Quantity	Correction terms	Uncertainty	
		(ppb)	(ppb)	
	$\overline{\omega_a^m}$ (statistical)	_	434	
	ω_a^m (systematic)	-	56	
	$\overline{C_e}$	489	53	
ω_a	C_p	180	13	pa)
$\overline{\widetilde{\omega}'(T)}$	C_{ml}	-11	5	+ R)
$\omega_p(\Gamma_r)$	C_{pa}	-158	75	$k \mid Dq$
	$\overline{f_{\text{calib}}\langle\omega_p'(x,y,\phi)\times M(x,y,\phi)\rangle}$	_	56	
	B_k	-27	37	
	B_q	-17	92	
	$\mu_{p}'(34.7^{\circ})/\mu_{e}$	_	10	
	m_{μ}/m_e	_	22	
	$g_e/2$	-	0	
	Total systematic	_	157	
	Total fundamental factors	_	25	
	Totals	544	462	Argonne

 $\frac{\omega_{a}}{\widetilde{\omega}_{p}'(T_{r})} \approx \frac{f_{clock}(\omega_{a}^{m})(1+C_{e}+C_{p}+C_{ml}+C_{pa})}{f_{calib} < \omega_{p}(x, y, \phi) \times M(x, y, \phi) > (1+B_{k}+B_{q})}$

MEASURING ω_a

- Measure time and energy of decay positrons in the 24 calorimeters
- Due to parity violating weak decay, high energy positrons are emitted more along the direction of the spin
- Decay positron time distribution above an optimal energy threshold of E~1.7 GeV produces "wiggle" plot
- Main features of the "wiggle" plot from muon lifetime τ and spin precession ω_a, but actual fit way more complicated:

$$N(t) = N_0 e^{t/\tau} [1 - A\cos(\omega_a t + \phi)]$$

• Statistical uncertainty: $\sigma_{\omega_a} \propto 1/\sqrt{NA^2}$.

 $\frac{\omega_{a}}{\widetilde{\omega}_{p}'(T_{r})} \approx \frac{f_{clock}}{f_{calib}} \ll_{a}^{m} (1 + C_{e} + C_{p} + C_{ml} + C_{pa})$

BEAM DYNAMICS CORRECTIONS

Electric field correction C_e:

- Electric field term cancels for magic momentum but stored muons have momentum spread $\Delta p/p \sim 0.15\%$
- Correction from measurement of equilibrium radius $\langle x_e^2 \rangle$

Pitch correction C_p:

- Vertical motion due to betatron oscillations reduces $\vec{\omega}_a$
- Correction from vertical muon distribution $\langle y^2 \rangle$

Muon loss correction C_{ml}:

- Stored muons can be lost and can carry different phase
- Detect and correct through coincidences in three neighboring calorimeters

Phase acceptance correction C_{pa}:

- In Run-1, damaged high-voltage resistors extended the charging time of the quadrupoles, introducing a time dependency over the fill
- Correction from tracker data and simulated positron acceptance, asymmetry, and phase maps

 $\frac{\omega_{a}}{\widetilde{\omega}_{p}'(T_{r})} \approx \frac{f_{clock}}{f_{calib}} \underbrace{\omega_{a}^{m}}_{\phi_{a}} (1 + C_{e} + C_{p} + C_{ml} + C_{pa}) \\ (1 + B_{k} + B_{q}) \underbrace{\omega_{p}(x, y, \phi)}_{\phi_{a}} M(x, y, \phi) > (1 + B_{k} + B_{q})$

MEASURING < $\omega_p(x, y, \phi)$

- Measurement of field amplitude via Nuclear Magnetic Resonance:
 - Frequency extracted from Free Induction Decay signal
 - Very good frequency precision (ppb level)
 - Good to track slow field changes
- 378 NMR probes installed in groups of 6 and 4 probes
 - Continuously track slow field drift every ~1 second
 - 72 azimuthal locations around the ring
- In-vacuum trolley maps the field every 3 to 5 days
 - 9000 measurements for each of the 17 probes
 - Detailed frequency maps where the muons are
 - Synchronizes the fixed probes to field maps

Electronics

MEASURING < $\omega_p(x, y, \phi) \times M(x, y, \phi) >$

• The frequency maps $\omega_p(x, y, \phi)$ from trolley and fixed probe data need to be weighted by the muon distribution $M(x, y, \phi)$

$$\tilde{\omega}_{p} = \left\langle \frac{\int \omega_{p}(x, y, \phi) \ M(x, y, \phi) \ \mathrm{d}x \ \mathrm{d}y}{\int M(x, y, \phi) \ \mathrm{d}x \ \mathrm{d}y} \right\rangle$$

- The muon distribution M(x, y, φ) is extracted from the two straw-tracker stations
- M(x, y, φ) includes beam dynamics information (e.g. beta functions) and detector acceptances (calorimeter)

 $\frac{\omega_a}{\widetilde{\omega}'_p(T_r)} \approx \frac{f_{clock}}{f_{calib}} \ll_a^m (1 + C_e + C_p + C_{ml} + C_{pa})$

QUADRUPOLE TRANSIENT CORRECTION B_q

- Electrostatic quadrupoles have fast, pulsed currents
- Fixed probes have low bandwidth and shielded by vacuum chamber
- Built special vacuum compatible probe to measure any fast fields
- Measurement revealed fast magnetic field changes and led to largest systematic uncertainty in Run-1

SUMMARY OF RUN-1 RESULT AND OUTLOOK

SUMMARY OF RUN-1 RESULT

SUMMARY AND OUTLOOK

- The Muon g-2 experiment measured a_{μ} to 460 ppb, consistent with BNL
- The combined experimental result differs from the SM value by 4.2σ
- This result is based on ~6% of our total statistical goal
- Already ~85% of the total statistics on tape (Run-1 to Run-5)
- Several key upgrades since Run-1 will further improve systematics:
 - New quad resistors reduces C_{pa}
 - Higher kicker voltage to center beam radially
 - Thermal magnet insulation and better hall cooling stabilize field drift
 - Improved quad transient measurement
 - New RF system to suppress CBO amplitude
- Upcoming final Run-6 should bring us to overall statistics goal
- ... stay tuned for more results to come (Run2/3 result ~Spring 2023)!

SUMMARY AND OUTLOOK

