Speaker
Description
Spin is a unique probe to unravel the internal structure and QCD dynamics of nucleons. Exploration of the 3D spin structure of the nucleons is based on the complementarity of lepton scattering processes and purely hadronic probes. Some of the main questions that physicists have been trying to address in spin experiments involving different interactions and probes are: How does the spin of the nucleon originate from its quark, anti-quark, and gluon constituents and their dynamics? What can transverse-spin phenomena teach us about the structure of the nucleon and properties of QCD? In my talk, I will give an overview of selected recent results and future opportunities from the experimental campaigns probing the spin structure of nucleons utilizing both lepton scattering processes and hadron-hadron interactions, like Jefferson Lab experiments with electron beam, COMPASS muon-beam and Drell-Yann program, as well as the RHIC-Spin program with pp collisions.
speaker affiliation | Argonne National Laboratory |
---|