QNP2022 - THE 9TH INTERNATIONAL CONFERENCE ON QUARKS AND NUCLEAR PHYSICS

Recent Spin Experimental Results and Future Opportunities

MARIA ŻUREK Argonne National Laboratory

SEPTEMBER 5 - 9, 2022

PHYSICS QUESTIONS - OUTLOOK

Questions

How does the **spin of the nucleon originate** from its **quark**, **anti-quark**, and **gluon** constituents and their dynamics?

- 1. How do gluons contribute to the proton spin?
- 2. What is the landscape of the polarized quark-sea in the nucleon?
- 3. What is the **spin structure of nucleon at high-x**?

What can **transverse-spin phenomena** teach us about the structure of the nucleon and properties of QCD? How is the **nucleon spin correlated with the motion** of partons? How is the **nucleon spin correlated with the spatial distribution** of partons?

- 4. GPD-sensitive measurements
- 5. Quark and Gluon Sivers' function
- 6. Quark Collins effect (transversity + Collins Fragmentation Function)
- 7. Higher Twist Parton Distribution Functions
- 8. Unpolarized Boer-Mulders function

PHYSICS QUESTIONS

How does the **spin of the nucleon originate** from its **quark**, **anti-quark**, and **gluon** constituents and their dynamics?

Two established approaches to look at the compositions of the proton spin:

- Frame independent spin sum rule
- Quark and gluon Jq (sum of ΔΣ/2 and Lq) and Jg can be obtained form Generalized Parton Distributions (GPDs) moments
- Phys. Rev. Lett. 78, 610-613 (1997)

Jaffe-Manohar sum rule:

- All terms have **partonic interpretation**
- In infinite-momentum frame
- *l*q and *l*g (Twist-3 quantities) can be extracted from GPDs
- Nucl. Phys. B 337, 509-546 (1990)

PHYSICS QUESTIONS

How is the **nucleon spin correlated with the motion** of partons? How is the **nucleon spin correlated with the spatial distribution** of partons? **Nucleon tomography**

Huey-Wen Lin, PRL 127 (2021) 18, 182001, from Lattice

PHYSICS QUESTIONS

How is the **nucleon spin correlated with the motion** of quarks and gluons? How is the **nucleon spin correlated with the spatial distribution** of partons? **Nucleon tomography**

Impact parameter dependent parton distribution functions $f(x,b_{\tau})$

Three-dimensional structure of the nucleon: challenges and prospects	Harut Avagyan 🥝	
online	11:30 - 11:55	
GPDs of light nuclei	Sara Fucini 🥝	
online	11:55 - 12:20	/
A novel approach to calculate GPDs from lattice QCD	Shohini Bhattacharya 🥝	-
online	12:20 - 12:45	·
Revisting GPD evolution	Valerio Bertone 🥝	2260
online	12:45 - 13:10	Jace
Deeply virtual Compton Scattering on the proton and the neutron at Jefferson Lab	Silvia Niccolai 🥝	
online	13:10 - 13:35	

Theory overview of GPDs - fits and modelization	Kresimir Kumericki	Ø
online	11:30 - 11:55	;
Virtual Compton Scattering and the Generalized Polarizabilities of the proton	Nikos Sparveris	0
online	11:55 - 12:20	,
Timelike Compton Scattering with CLAS12 at Jefferson Lab	Pierre Chatagnon	Ø
online	12:20 - 12:45	;
Compton scattering on liquid deuterium target at HI\$\gamma\$S: Measuring nucleon polarizabiliti	es Danula Godagama (Ø
online	12:45 - 13:10	,
Multichannel approach for new GPD-sensitive experimental measurements	Marie BOER	Ø
online	13:10 - 13:30	,

Transverse momentum dependent parton distribution functions (TMDs) $f(x,k_{\tau})$

Momentum space

MAPTMD22: a new global fit of unpolarized TMDs	Matteo Cerutti 🥝
online	14:00 - 14:25
TMD distributions at the next-to-leading power.	Simone Rodini 🥝
online	14:25 - 14:50
Exploring the potential role of diquarks in hadronization using SIDIS on nuclear targets	Will Brooks 🥝
online	14:50 - 15:15
New insights on the factorization of single-inclusive \$e^+e^-\$ annihilation	Andrea Simonelli 🥝
online	15:15 - 15:40
TMD measurements at JLab and future EIC.	Marco Contalbrigo
online	15:40 - 16:05

EXPERIMENTAL PROBES

How to access nucleon spin structure?

(Semi-Inclusive) Deep Inelastic Scattering

e+e- annihilation (access to FF)

Hadron-hadron interactions

M. Żurek - Experimental Spin Results

QUARK AND GLUON HELICITIES

LONGITUDINAL SPIN STRUCTURE

 $\nu = E - E'$

 $Q^2 = 3 (GeV/c)^2$

∆u(x)

×0.

0.2

0.

 $y = \nu/E, \ \gamma^2 = Q^2/\nu^2$

10-1

X)bb

-0.05

-0 15

 $Q^2 = 3 (GeV/c)^2$

- Decades of studies in **Deep Inelastic Scattering**, as well as **Semi-**Inclusive Deep Inelastic Scattering and proton-proton collisions
- Polarized DIS cross section studied at SLAC, CERN, DESY (HERMES), JLab encodes information about helicity structure of quarks inside the proton (double spin asymmetries)

 $\frac{\mathrm{d}^{2}\sigma_{\mathrm{LL}}\left(x,Q^{2}\right)}{\mathrm{d}x\,\mathrm{d}Q^{2}} = \frac{8\pi\alpha^{2}y}{Q^{4}} \left[\left(1 - \frac{y}{2} - \frac{y^{2}}{4}\gamma^{2}\right) g_{1}\left(x,Q^{2}\right) - \frac{y}{2}\gamma^{2}g_{2}\left(x,Q^{2}\right) \right] \right]$

∆s(x)

-0.0

-0.0

-0.0

-0.04

M. Żurek – Experimental Spin Results

Ouark helicity distribution

10⁻¹

 $Q^2 = 3 (GeV/c)^2$

10

×)6⊽ 0.2

-0

 $g_1(x) = \frac{1}{2} \sum e_q^2 \Delta q(x)$

In (LO QCD) Quark Parton Model

 $Q^2 = 3 (GeV/c)^2$

GLUON HELICITY

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\Sigma \Delta f_a \otimes \Delta f_b \otimes \hat{\sigma} a_{LL} \otimes D}{\Sigma f_a \otimes f_b \otimes \hat{\sigma} \otimes D}$$

- At RHIC energies: sensitivity to qg and gg Access to $\Delta g(x)/g(x)$
- Cross-section measurement to support the NLO pQCD interpretation of asymmetries
- STAR inclusive jet A_{LL} from 2009 data at \sqrt{s} = 200 GeV PRL 115 (2015) 9, 092002
 - Included in global pQCD analysis provided evidence for **positive gluon polarization for x > 0.05 at Q² = 10 GeV**

 $\vec{p} + \vec{p} \rightarrow \text{jet/dijet/hadrons} + X$

versus

Global fit including single jet data (also STAR 2015)

from unpol. and pol. hadron collisions (+ DIS and DY)

NNPDFpol1.0, DSSV*: STAR 2009 jet data not included NNPDFpol1.1, DSSV new fit: STAR 2009 jet data included

GLUON HELICITY

STAR, PRD 105 (2022) 9, 092011

Higher \sqrt{s} and more forward rapidity push sensitivity to lower x

- Down to ~0.004 with STAR Endcap (η < 1.8) dijets at 510 GeV (analysis being finalized)
- Dijets provide stricter constraints to underlying partonic kinematics better constraints on functional form of $\Delta G(x)$
- Direct photon sensitive to $gq \rightarrow \gamma q$ LO process; clean access to $\Delta g(x)$ (no hadronization)
- Consistent results from both energies and both experiments

RHIC concluded the data taking with longitudinally polarized protons in 2015 The data are anticipated to provide the most precise insights in $\Delta g(x)$ well into the future

PHENIX. arXiv:2202.08158

POLARIZED QUARK SEA

Covered lepton η : 0.05 < x₁ < 0.25

Full available data set analized from STAR (shown) and PHENIX (PHENIX, PRD 98 (2018), 032007)

- Significant preference for Δu over $\Delta d \rightarrow Opposite$ to the spin-averaged quark-sea distributions
- Evaluations from DSSV and NNPDF agree with data in sea and valence quark region

NEUTRON SPIN STRUCTURE AT HIGH-X

Observable: The Virtual photon-nucleon asymmetry $A_1 = (\sigma_{1/2} - \sigma_{3/2})/(\sigma_{1/2} + \sigma_{3/2})$ $A_1(x, Q^2) = \left[g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)\right] / F_1(x, Q^2) \approx g_1(x) / F_1(x) \text{ for large } Q^2$

Hall C A1n experiment with polarized ³He target (E12-06-110)

- Without radiative corrections
- Statistical uncertainties only
- Nuclear corrections to be applied

$$A_1^n = \frac{F_2^{^{3}\text{He}} \left[A_1^{^{3}\text{He}} - 2\frac{F_2^p}{F_2^{^{3}\text{He}}} P_p A_1^p \left(1 - \frac{0.014}{2P_p} \right) \right]}{P_n F_2^n \left(1 + \frac{0.056}{P_n} \right)}$$

- Explore the Q² dependence of A1n with large x value 0.61 < x < 0.77
- After combining with proton data (CLAS12), extract **polarized to unpolarized parton distribution function** ratios $\Delta u/u$ and $\Delta d/d$ for large x region

GENERALIZED PARTON DISTRIBUTIONS

ACCESS TO GPDs

N / q	U	L	Т
U	H		E_T
L		$ ilde{H}$	$ ilde{E}_T$
Т	E	$ ilde{E}$	$H_T \ ilde{H}_T$

4 chiral-even and 4 chiral-odd quark **GPDs at leading twist** for a spin-½ hadron

Connection to the **proton spin**:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right] \qquad J_{q} = \frac{1}{2} \Delta \Sigma + L_{q}$$

Accessed via hard exclusive processes: cross section and asymmetries

- Deep virtual Compton scattering (DVCS) and hard exclusive meson production (HEMP)
- H, E accessed in vector meson production, \widetilde{H} , \widetilde{E} in pseudoscalar meson production
- All 4 chiral-even GPDs accessed in DVCS

Interference between DVCS and Bethe-Heitler amplitude plays key role

- Allows to determine both magnitude and phase of the DVCS amplitude
- $\sigma_{int} \sim$ electromagnetic form factor × Compton form factor

$$\sigma_{(ep \to ep\gamma)} = |DVCS|^2 + |BH|^2 + Interference$$

$$\mathcal{H}(\xi,t) = \sum_{q} e_q^2 \int_{-1}^1 dx \, H^q(x,\xi,t) igg(rac{1}{\xi-x-iarepsilon} - rac{1}{\xi+x-iarepsilon} igg)$$

M. Żurek – Experimental Spin Results

DVCS AT HALL A

Helicity independent and dependent cross-section at high values of the Bjorken x_B

- 2014 and 2016 data analyzed
- Extraction of 4 helicity-conserving CFF of the nucleon as a function of ${\rm x}_{_{\rm B}}$
- See also the Preliminary DVCS Beam Spin Asymmetries from CLAS12 in S. Niccolai talk

\rightarrow See talk by S. Niccolai and M. Boer

DVCS AT COMPASS

\rightarrow See talk by B. Badelek

data

MC BH

MC incl. nº

MC excl. nº

[rad]

 $\propto e^{-b|t|}$

v*

φ

COMPASS preliminar

 $\langle x \rangle \approx 0.063$

 $\dot{Q}^2 \approx 2.1 \ {\rm GeV}^2$

 $\mathrm{d}\sigma^{\mathrm{DVCS}}$

 $\overline{\mathrm{d}t}$

60

50

40

30

10

- Full 2016 dataset to be analized (~ x5 statistics) •
- Determination of transverse extension of partons (from t-slope of cs)

θ

TIMELIKE COMPTON SCATTERING AT CLAS12

TCS $e^+(k')$ Bethe-Heitler $\gamma(q)$ $\gamma^*(q')$ $e^-(k)$ γ $e^-(k)$ γ $e^+(k')$ e^+ e^+

Timelike Compton Scattering: time reversal process of DVCS

Photon polarization asymmetry

- Sensitive to Im(CFF)
- Comparison to DVCS allows to test the universality of GPDs - especially the imaginary part of H

Forward-backward asymmetry

- Real part of the CFF and nucleon D-term
- Relates to mechanical properties of the nucleon (quark pressure distribution)

 \rightarrow See talk by P. Chatagnon

TRANSVERSE MOMENTUM DEPENDENT

PDFs

LEADING TWIST TMDs

TMDs surviving integration over k_{τ}

Naive time-reversal odd TMDs describing strength of spin-orbit correlations.

Chiral odd TMDs

- 8 TMD (PDFs) at leading-twist description (analog table for fragmentation functions)
- Off-diagonal part vanishes without parton's transverse motion
- **Sivers effect:** correlations between the nucleon transverse spin direction and parton transverse momentum in the polarized nucleon
- Collins effect: fragmentation of a transversely polarized parton into a final-state hadron
- **Boer-Mulders effect:** correlations between the parton transverse spin direction and parton transverse momentum in the polarized nucleon

TMD IN SIDIS MEASUREMENTS

Compendium of HERMES TMD results HERMES, J. High Energ. Phys. 2020, 10 (2020)

- TMD results with transversely polarized H target
- Refined analysis with 3D binning (x, z, P_{T})
- (Anti-)proton measurements

Kaon ($u\bar{s}$) amplitudes larger than pion ($u\bar{d}$)

- Unexpected if u-quark scattering dominates
- May point to a role of sea quarks

Sivers at **COMPASS**

COMPASS, PLB 744 (2015) 250 COMPASS, NPB 940 (2019) 34

- Sivers signal smaller at COMPASS (27.6 GeV) than at HERMES (160 GeV) – TMD evolution?
- P_T -weighted asymmetry amplitudes
 - Measurement of TMD $k_{_{\rm T}}$ moments that avoids assumptions on shape of $k_{_{\rm T}}$

SIVERS FUNCTION SIGN CHANGE

Test of nonuniversality of Sivers function: Sivers_{DIS} = - Sivers_{DY/W/Z} and TMD evolution effects

M. Żurek - Experimental Spin Results

TWIST-3 CORRELATORS

Indirect constraint on the Sivers function via integral relationship with the Twist-3 trigluon correlator

Theory curves : L. Gamberg, Z. Kang, A. Prokudin, PRL 110 23, 232301 (2013)

- RHIC midrapidity measurements for direct photon and HF electrons sensitive to tri-gluon twist-3 → gluon Sivers TMD
- **sPHENIX** capabilities in mid-rapidity: direct photons and D^o meson asymmetries
- STAR enhanced capabilities with forward upgrade: jet, π^0 , charged hadrons, photons A_{N} :
 - \rightarrow constraint on the evolution and flavor dependence of the Twist-3 ETQS function

TRANSVERSITY

- Net density of quarks with spin aligned with the transversely polarized nucleon (leading twist)
- Two asymmetries A_{μτ} provide sensitivity at RHIC

Spin-dependent modulation of hadrons in jets Collins function (TMD FF)

Correlation of transverse spin of fragmenting quark and transverse momentum kick given to fragmentation hadron

Di-hadron correlation measurements

"interference FF" (collinear framework) Correlation of transverse spin of fragmenting quark and momentum cross-product of di-hadron pair

M. Zurek – Experimental Spin Results

TRANSVERSITY

- Net density of quarks with spin aligned with the transversely polarized nucleon (leading twist)
- HERMES & COMPASS Collins asymmetries

Global extractions - Collins function and transversity

- u and d-quark transversity have ~equal magnitude and opposite size for favored and unfavored Collins FFs
- **d-quark transversity** less constrained given the u-quark dominance of many of the processes used in the global fits
- COMPASS 2021 run on the deuteron will double the experimental precision on the proton's tensor charge $g_{\tau} = \delta u \delta d$
- Further prior-to-EIC measurements of Collins asymmetries: STAR with forward upgrade, sPHENIX, JLab12/SoLID, SpinQuest

BOER MULDERS

Unpolarized SIDIS on proton at COMPASS

Transverse momentum distributions and azimuthal symmetries

Rich kinematic dependences, difference between positive and negative hadrons

Unpolarized **DY** angular distribution at **COMPASS**

$$\frac{d\sigma}{d\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda+3} \left[1 + \lambda \cos^2 \theta_{CS} + \mu \sin 2\theta_{CS} \cos \phi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos 2\phi_{CS} \right]$$

$$R. \text{ Longo, CPHI22}$$

$$A_{UU}^{\cos 2\phi} = \frac{\nu}{2} \propto h_1^{\perp q}(p) \otimes h_1^{\perp \bar{q}}(\pi^-)$$

$$R. \text{ Longo, CPHI22}$$

$$\int_{0}^{1} \frac{(1 + \lambda \cos^2 \theta_{CS} + \mu \sin^2 \theta_{CS} \cos \phi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos^2 \phi_{CS}]$$

$$\int_{0}^{1} \frac{(1 + \lambda \cos^2 \theta_{CS} + \mu \sin^2 \theta_{CS} \cos \phi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos^2 \phi_{CS}]$$

$$R. \text{ Longo, CPHI22}$$

$$\int_{0}^{1} \frac{(1 + \lambda \cos^2 \theta_{CS} + \mu \sin^2 \theta_{CS} \cos \phi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos^2 \phi_{CS}]$$

$$\int_{0}^{1} \frac{(1 + \lambda \cos^2 \theta_{CS} + \mu \sin^2 \theta_{CS} \cos \phi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos^2 \phi_{CS}]$$

DYNNLO pQCD calculation not enough to well describe the v -dependence

Room for a non-zero TMD Boer-Mulders effect

OVERLAP WITH KINEMATIC REACH OF EIC

 \rightarrow Study factorization breaking effects for TMD observables in hadronic collisions

 \rightarrow Important input to study evolution of TMDs and essential kinematic overlap in x-Q² with future EIC

Fixed-target DIS, RHIC-spin, and EIC are truly complementary

SELECTED FUTURE OPPORTUNITIES

STAR Forward Upgrade:

- p[↑]p[↑], p[↑]Au at 200 GeV 2024, p[↑]p[↑] at 510 GeV 2022
- Forward jet capability and charge-sign discrimination
- Fwd rapidities: TMD measurements at high x
 - Sivers, Transversity at high x + Collins/IFF
- Midrapidity: improve statistics of Sivers via dijet & W/Z, Collins via hadrons in jets
- \rightarrow See talk by J. Brandenburg

sPHENIX:

- $p^{\uparrow}p^{\uparrow}$, $p^{\uparrow}Au$ at 200 GeV 2024
- Utilizing the jet, heavy flavor (MAPS-based vertex tracker) and direct photon strengths of the sPHENIX barrel to probe:
 - Sivers and Collins effect
 - Nuclear PDFs and FF in midrapidity
 - \rightarrow See talk by D. Perepelitsa, H. Gao

JLab 12 GeV:

- Precision data for valence quarks from CLAS12, HallA/C, SoLID, ...
- Upgrade perspectives: positron beam, higher luminosity and energy (JLab 20+ GeV)
 → See talk by M. Battaglieri, H. Avakian, S. Niccolai, M. Contalbrigo, M. Boer

COMPASS:

- transversely polarized ⁶LiD target (2021 run)
 - d-quark transversity (and more)
 - \rightarrow See talk by B. Badelek

AMBER at the M2 beam line of CERN SPS

Approved for phase 1 (Pion PDFs, proton radius and more)
 → See talk by A. Dzyuba

SpinQuest at Fermilab:

- Transversely polarized NH₃ /ND₃ target
- Polarized DY experiment with proton beam
 - Sivers & transversity TMDs of sea quarks

LHCspin at CERN

- Transversely polarized $\rm H_{_2}\,\&\,D_{_2}$ targets with LHCb, 2025+

AFTER at LHC

• Fix target program at LHC, 2025+

SPD at JINR: polarized proton and deuteron beams, 2025+ \rightarrow See talk by I. Denisenko

EicC (China), PANDA, ... 2025+

SUMMARY

- Experiments utilizing both lepton scattering processes and hadron-hadron interactions unravel complex nucleon spin structure
- The **3D structure of nucleon** in transverse-momentum and position space is studied using data from various types of **complimentary scattering experiments**
- The **Electron Ion Collider** precision in spin structure of nucleons from low to high x •

257. The EPIC detector: From physics motivation to a viable detector concept

