Speaker
Description
In high energy collisions, heavy quarks (c, b) are predominately produced in the initial hard scattering process. The relative ratio of different heavy flavor hadrons species serves as a tool to study charm quark hadronization mechanism. Recently, data from $p$+$p$, $p$+A, and A+A collisions at RHIC and LHC showed that the $\Lambda_c^+/D^0$ ratio is considerably larger than the fragmentation baseline. The high luminosity e+p and e+A collisions in the future Electron-Ion Collider (EIC) at Brookhaven National Laboratory would allow us to systematically investigate the $\Lambda_c$ production over a broad kinematic region, which will shed detail insights on charm hadrochemistry and charm-quark hadronization.
In this talk, I will present the reconstruction capability study for $\Lambda_c^+$ baryons at the future EIC experiment utilizing an all silicon tracker based on next generation MAPS technology. Physics projections on the measurement of $\Lambda_c^+/D^0$ ratio in e+p and e+A collisions in the future EIC will be presented. I will also discuss the physics potentials towards understanding the nucleon/nuclei structure and cold nuclear matter effects enabled by the $\Lambda_c^+$ measurements at EIC.