# Charm baryon production in the future EIC

#### Yuanjing Ji

In collaboration with Xin Dong, Matthew Kelsey, Sooraj Radhakrishnan, Nu Xu

Lawrence Berkeley National Laboratory

EIC UG Meeting Early Career Workshop July 29-30, 2021



#### Outline

- Motivation
- Simulation set up and  $\Lambda_c^+$  reconstruction
- Projections of  $\Lambda_c^+/D^0$  vs  $p_T$  and multipicity
- Summary

## Motivation

- Hadronization
  - Heavy quarks:  $m_c \gg \Lambda_{QCD}$ , pQCD calculable

initial PDF hard process

 $\sigma = f_i(x) \otimes \sigma_{hard}^{ij}(x, Q^2) \otimes ($ 

• p+p collisions: enhanced  $\Lambda_c^+/D^0$  ratio w.r.t fragmentation baseline in e<sup>+</sup>e<sup>-</sup>

q

q



Color reconnection (CR): 

hadronization

- between which partons should strings form **PYTHIA**:
- default: MPI-based CR baryon/meson ~ fragmentation
- newer: QCD-based CR JHEP 08:003 (2015)

-> QCD color rule in reconnection possibility

non-perturbative

- -> introduce junction formation
- -> enhance baryon production



**Di-guark** 

### Motivation

- $\Lambda_c^+$  measurements in ep collisions in the future EIC
  - limited HF baryon measurements in ep (and pp) currently

- JHEP 08:003 (2015)
- probe to relative contribution of diquark- and junction-driven baryon production

e.g:  $\Sigma_c^0$  production  $\Sigma_c^0 \to \Lambda_c^+ \pi$ 

-> in diquark: dd (spin-1) suppressed relative to ud (spin-0,1) combined with c quark

-> junction: no special penalty

- CR expected universal, never tested in ep
- clean initial condition in ep(A)



#### All silicon tracking detector for EIC



All-silicon tracker geometry

#### **Detector performance**

| $\eta$       | $\sigma_p/p$ - 3T (%)    | $\sigma(\mathrm{DCA}_{\mathrm{r}\phi})~(\mu\mathrm{m})$ | $p_{\rm max}^{\rm PID} \ ({\rm GeV}/c)$ |
|--------------|--------------------------|---------------------------------------------------------|-----------------------------------------|
| (-3.0, -2.5) | $0.1{\cdot}p\oplus 2.0$  | $60/p_T \oplus 15$                                      | 10                                      |
| (-2.5, -2.0) | $0.02{\cdot}p\oplus 1.0$ | $60/p_T \oplus 15$                                      | 10                                      |
| (-2.0, -1.0) | $0.02{\cdot}p\oplus 1.0$ | $40/p_T \oplus 10$                                      | 10                                      |
| (-1.0, 1.0)  | $0.02{\cdot}p\oplus 0.5$ | $30/p_T\oplus5$                                         | 6                                       |
| (1.0, 2.0)   | $0.02{\cdot}p\oplus 1.0$ | $40/p_T \oplus 10$                                      | 50                                      |
| (2.0, 2.5)   | $0.02{\cdot}p\oplus 1.0$ | $60/p_T \oplus 15$                                      | 50                                      |
| (2.5, 3.0)   | $0.1{\cdot}p \oplus 2.0$ | $60/p_T \oplus 15$                                      | 50                                      |

https://physdiv.jlab.org/DetectorMatrix/

#### Detector set up

- Pointing resolution
- PID ability
- Momentum resolution with B=3 T
- Primary vertex resolution
- Tracking efficiency

#### From full Geant4 simulation





#### Event simulation and acceptance

- Events generated by PYTHIA6 with EIC tune;
- Apply detector performance;
- Reconstruction channel:

 $Λ_c^+ → pK^-π^+$  (B.r.=6.28% PDG)  $D^0 → K^-π^+$  (B.r.=3.95% PDG)

• Expect much lower combinatorial background w.r.t p+p collisions





#### Topology performance and signal projection





- Improving signals with topology variables;
- Best significance achieved at |η|<1.</li>

## Projected uncertainty for $\Lambda_c^+/D^0$ vs $p_T$



- Precise measurements of charm baryon in future EIC collider;
- Ability to separate two CR frameworks at low  $p_T$  with L=10 fb<sup>-1</sup>.

## Multiplicity dependence

- Multiplicity
  - correlated with density of quarks and gluons in the final state
- Enhanced  $\Lambda_c^+/D^0$  ratio at high multiplicity in p+p from ALICE - similar structure predicted by QCD-based CR in PYTHIA
- EIC: high tracking efficiency







## Projected uncertainty for $\Lambda_c^+/D^0$ vs multiplicity

- Nch: Number of charged particles at  $p_T$ >0.2 GeV/c within  $|\eta|$ <3
- Clear separation at high multiplicity with different CR frameworks
- Larger model difference achieved in 1< $\eta$ <3 compared to  $|\eta|$ <1



## Summary

- Charm baryon measurements in the future EIC
  - heavy flavor hadronization in a better-known initial state systems
- $\Lambda_c^+/D^0$ : test universality of CR framework
  - expect precise measurements in EIC
- better CR model separation power for  $\Lambda_c^+/D^0$  vs multiplicity w.r.t  $p_T$  in ep collisions Outlook
- Excited states charm baryons, e.g.  $\Sigma_c^{0,+,++}, \Xi_c$

## Back ups

#### Impact of B=1.5 or 3 T

#### Momentum resolution

| $\eta$       | $\sigma_p/p$ - 3T (%)     | $\sigma_p/p$ - 1.5T (%)  |
|--------------|---------------------------|--------------------------|
| (-3.0, -2.5) | $0.1{\cdot}p \oplus 2.0$  | $0.2{\cdot}p \oplus 5.0$ |
| (-2.5, -2.0) | $0.02{\cdot}p \oplus 1.0$ | $0.04{\cdot}p\oplus 2.0$ |
| (-2.0, -1.0) | $0.02{\cdot}p \oplus 1.0$ | $0.04{\cdot}p\oplus 2.0$ |
| (-1.0, 1.0)  | $0.02{\cdot}p \oplus 0.5$ | $0.04{\cdot}p\oplus 1.0$ |
| (1.0, 2.0)   | $0.02{\cdot}p \oplus 1.0$ | $0.04{\cdot}p\oplus 2.0$ |
| (2.0, 2.5)   | $0.02{\cdot}p \oplus 1.0$ | $0.04{\cdot}p\oplus 2.0$ |
| (2.5, 3.0)   | $0.1{\cdot}p \oplus 2.0$  | $0.2{\cdot}p \oplus 5.0$ |

- Momentum resolution ~ 2 times worse with B=1.5 T compared to B=3 TeV
- Wider signal width -> ~20% decreasing in significance







