Speaker
Description
Studying the role of gluonic observables in exclusive scattering processes is essential as new physics programs, such as an electron ion collider, are planned in unprecedented kinematic regimes. We present a parameterization of gluon generalized parton distributions (GPDs) calculated using a reggeized spectator model. This parameterization is constrained using a combination of lattice QCD form factor calculations and extracted deep inelastic parton distributions. We evolve our parameterization at leading order in Q2 to the scale of experimental data using a perturbative QCD evolution framework. We demonstrate expected spatial distributions under Fourier transformation using our parametrization. Understanding the behavior of gluon GPDs is a first step towards extracting the gluon contribution to deeply virtual Compton scattering (DVCS) and timelike Compton scattering (TCS) observables. This work was funded by DOE grant DE-SC0016286 and SURA grant C2020-FEMT-002-04 and C2021-FEMT-006-05.