Conveners
Heavy Flavors and Quarkonia: Parallel 1
- Alessandro Pilloni (Messina U. and INFN Catania)
Heavy Flavors and Quarkonia: Parallel 1
- Sean Dobbs (Florida State University)
Heavy Flavors and Quarkonia: Parallel 4
- Jake Bennett (The University of Mississippi)
The identification of X(3872) requires a comparison of its properties with those expected for ordinary $c{\bar c}$ states, in particular for $\chi_{c1}^\prime$ which is the candidate ordinary state for the X(3872) identification. I will discuss predictions for observables involving $\chi_{c1}^\prime$ and work out relations with other observables involving ordinary charmonia.
We investigate the two-photon transitions of the charmonium system in relativistic dynamics on the light front. The light-front wave functions were obtained from solving the effective Hamiltonian based on light-front holography and one-gluon exchange interaction within the basis light-front quantization approach. We compute the two-photon transition form factors as well as the two-photon decay...
We investigate the cos2𝜙𝑡 azimuthal asymmetry in 𝑒 𝑝→𝑒 𝐽/𝜓 𝐽𝑒𝑡 𝑋, where 𝐽/𝜓-jet
pair is almost back-to-back in the transverse plane, within the framework of the
generalized parton model(GPM). We use non-relativistic QCD(NRQCD) to calculate
the 𝐽/𝜓 production amplitude and incorporate both color singlet(CS) and color
octet(CO) contributions to the asymmetry. We estimate the asymmetry...
In present work we study the production of ground and excited charmonium states in $e^- e^+ \rightarrow \gamma+ \eta_c(nS)/\chi_{cJ}(nP)(J=0,1)$ [1] through leading order (LO) (tree-level) diagrams, which proceed through exchange of a virtual photon that couples to $\gamma$ and $\eta_c/\chi_{cJ}$ through the triangular quark loop diagram, in the framework of $4\times 4$ Bethe-Salpeter equation...
Heavy quarkonium production of high transverse momentum ($p_T$) in hadronic collisions can be pursued in the QCD factorization formalism with heavy quarkonium fragmentation functions (FFs), which carry rich information on how a physically observed quarkonium was emerged from quarks and gluons produced in high energy scattering. The scale evolution of quarkonium FFs enables us to resum...
Heavy quarkonium production is considered as useful tools to study perturbative and nonperturbative aspects of QCD. For this, it is essential to understand the mechanism of quarkonium production from QCD theory, which remains elusive to this day. In this talk, we review the current status of theoretical approaches and recent progresses in our understanding of heavy quarkonium production based...
We present the next-to-leading order (NLO) calculation of associated hadroproduction of $J/\psi$ plus $W$ or $Z$ bosons within the factorization framework of nonrelativistic QCD (NRQCD). We compare to ATLAS data using various sets of nonperturbative long distance matrix elements (LDMEs) as input. Our results thereby open up a new angle in the ongoing quest to understand whether the LDMEs are...
We present the construction of a simple-functional form light-front wavefunctions (LFWFs) of charmonium and bottomonium states on a small-sized basis function representation. In this work, we modeled the LFWFs for four charmonium states and three bottomonium states, $\eta_c$, $J/\psi$, $\psi'$, and $\psi(3770)$, $\eta_b$, $\Upsilon$, $\Upsilon(2s)$, as superpositions of orthonormal basis...
In this talk we present our results on production of heavy quarkonia pairs in the kinematics of future electron-proton colliders, like EIC, LHeC and FCC-he, and in ultraperipheral collisions at LHC. We analyzed in detail the mechanism which gives the dominant contribution in the leading order in strong coupling $\alpha_s$, both for the hidden-flavour quarkonia pairs and for the double heavy...
The PHENIX experiment at RHIC collected data up to 2016, primarily at CM collision energies of 200 and (for polarized pp collisions) 500 GeV/nucleon. PHENIX could measure both heavy quarkonia and open heavy flavor decays in the rapidity range -2.2 < y < + 2.2, using the muon arms and the central arm. Analysis of the very large data set collected still continues. Recently, heavy flavor results...
Open Heavy Flavor and Quarkonia production in heavy ion collisions at RHIC and LHC.
Heavy flavored mesons produced with high pT in heavy ion collisions collisions, reveal several specific features of the production mechanism:
(i) short time of jet formation by a highly virtual heavy quark;
(ii) enhancement of the fragmentation function at large fractional momenta of the heavy meson;
(iii) extremely short time of color neutralization and formation of the...
Briefly after the Big Bang, the early universe was in a high temperature and high density environment. In order to recreate this state of matter in the laboratory, mini bangs are created by colliding heavy ions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and subsequently at the Large Hadron Collider (LHC) at CERN. In this talk I shall be covering on...