Indico is back online after maintenance on Tuesday, April 30, 2024.
Please visit Jefferson Lab Event Policies and Guidance before planning your next event: https://www.jlab.org/conference_planning.

Sep 5 – 9, 2022
online
US/Eastern timezone
Thank you to all the participants for a great QNP2022!

Results on Breit-Wheeler process and vacuum birefringence

Sep 5, 2022, 12:55 PM
25m
online

online

FSU, Tallahassee, FL, USA
oral presentation Heavy Ions

Speaker

Ms Xiaofeng Wang (Shandong University)

Description

Ultra-relativistic heavy-ion collisions are expected to produce some of the strongest magnetic fields ($10^{13}$ $-$ $10^{16}$ Tesla) in the Universe. The initial strong electromagnetic fields have been proposed as a source of linearly-polarized, quasi-real photons that can interact via the Breit-Wheeler process to produce $e^{+}e^{-}$ pairs.

In this talk, we will present latest STAR measurements of $e^{+}e^{-}$ pair production in ultra-peripheral and peripheral Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV. A comprehensive study of the pair kinematics is presented to distinguish the $\gamma\gamma\rightarrow e^{+}e^{-}$ process from other possible production mechanisms. Furthermore, we will present and discuss the observation of a 4th-order azimuthal modulation of $e^{+}e^{-}$ pairs produced in the Breit-Wheeler process. The striking 4th-order angular modulation is a direct result of vacuum birefringence, a phenomenon predicted in 1936 that empty space can split light according to its polarization components when subjected to a strong magnetic field. Their implications for the properties of the magnetic filed produced in heavy-ion collisions will be discussed.

speaker affiliation for STAR Collaboration

Primary author

Ms Xiaofeng Wang (Shandong University)

Presentation materials