Speakers
Dr
Matthew Sievert
(Brookhaven National Laboratory)Dr
Matthew Sievert
(Los Alamos National Laboratory)
Description
Parton distribution functions in the small-x limit have long been known to be dominated by gluon bremsstrahlung produced in the BFKL and BK / JIMWLK evolution mechanisms. This small-x gluon cascade generates high color-charge densities, leading to the effective semi-classical theory known as the color-glass condensate (CGC). While this unpolarized small-x evolution has been thoroughly studied, the evolution of the polarized parton distributions is much less understood. Using modern CGC techniques, we calculate the small-x evolution equations for the helicity distribution of polarized quarks. This polarized small-x evolution is quite different from the unpolarized evolution, bringing in much more complicated dynamics which transfer spin to small x. Although the quark polarization at small x is initially suppressed, strong evolution corrections substantially enhance the amount of spin at small x. By solving our equations (numerically, in the large-Nc limit), we compute the asymptotic behavior of the quark helicity at small x, and we discuss the implications of this result for the outstanding Proton Spin Puzzle.
Primary author
Dr
Matthew Sievert
(Los Alamos National Laboratory)
Co-authors
Daniel Pitonyak
(Penn State University - Berks)
Prof.
Yuri Kovchegov
(The Ohio State University)