Quark Polarization at Small x

Matthew D. Sievert

with Yuri Kovchegov

and Daniel Pitonyak

7th Workshop of the APS Topical Group on Hadron Physics Washington, D.C. Thu. Feb. 2, 2017

M. Sievert

Overview: The Main Message

• Helicity PDF's obey novel, intricate small-x quantum evolution equations.

 Small-x evolution leads to a potentially sizeable contribution to the proton spin.

Yuri V. Kovchegov, Daniel Pitonyak, M.S., Phys. Rev. D95 (2017) 014033Yuri V. Kovchegov, Daniel Pitonyak, M.S., Phys. Rev. Lett. 118 (2017) 052001

M. Sievert

Motivation: The Small-x Limit of PDF's

 Unpolarized PDF's show a power-law growth of gluons and sea quarks at small x due to (BFKL) quantum evolution.

 The cascade of small-x gluons drives up the color-charge density, enhancing multiple scattering.

• The high-density limit is characterized by the saturation of the gluon distribution.

M. Sievert

Motivation: Helicity PDF's at Small x

- In contrast, helicity PDF's are suppressed with power-law tails.
- The small-x evolution of helicity PDF's was studied by BER, predicting a growth at small x

Bartels, Ermolaev, and Ryskin, Z. Phys. C72 (1996) 627

$$x\,\Delta q\sim (\frac{1}{x})^{0.2}$$
 for $Q^2=10\;GeV^2$

- Could the small-x region make an important contribution to the proton spin?
- Could saturation physics be relevant?

adapted from Aschenauer et al., Phys. Rev. **D92** (2015) no.9 094030

4/19

Polarized DIS at Small x

 In DIS at small x, quark dipole scattering dominates over quark "knockout".

- PDF's at small x are described by dipole scattering amplitudes. $g_1(x,Q^2) = \int dr^- e^{ixp^+r^-} \langle pS | \bar{\psi}(0) \frac{\gamma^+\gamma^5}{2} \psi(r) | pS \rangle$
- Polarized PDF's at small x are described by polarized dipole scattering amplitudes.

$$V_{x_{\perp}}(\sigma) = V_{x_{\perp}} + \sigma V_{x_{\perp}}^{pol}$$

$$V_{x\perp} = \mathcal{P} \exp\left[ig \int dx^+ \hat{A}^-(x^+, 0^-, x_\perp)\right]$$
$$V_{x\perp}^{pol} \neq \mathcal{P} \exp\left[ig \int dx^+ \hat{A}^-(x^+, 0^-, x_\perp)\right]$$

The Polarized Dipole Amplitude

- Calculate the polarized dipole amplitude by relating it to a dipole cross-section.
- Explicitly scale out energy suppression of initial conditions:

$$G_{10} \equiv \frac{1}{2N_c} \langle \langle Tr[V_0 V_1^{pol\dagger} + V_1^{pol} V_0^{\dagger}] \rangle \rangle$$

$$= -\frac{zs}{2} \begin{bmatrix} \frac{d\sigma}{d^2b} (q_0^{unp}, \Delta \bar{q}_1) + \frac{d\sigma}{d^2b} (\Delta q_1, \bar{q}_0^{unp}) \end{bmatrix}$$

• Calculate the Born initial conditions to quantum evolution. $\vec{x}_{\perp,ij} \equiv \vec{x}_{\perp,i} - \vec{x}_{\perp,j}$

$$G^{(0)}(x_{10}^2, zs) = \frac{\alpha_s^2 C_F \pi}{N_c} [C_F \ln \frac{zs}{\Lambda^2} - 2\ln(zs\,x_{10}^2)]$$

M. Sievert

Origins of Helicity Evolution

 Helicity evolution is driven by parton splitting functions which transfer spin to small x.

$$\left\langle V_1^{pol\dagger}(z_1) \right\rangle \sim \int \frac{dz_2}{z_2} \int d^2 x_2 \left(\frac{\alpha_s C_F}{2\pi^2} \frac{z_2}{z_1} \frac{1}{x_{21}^2} \right) \left\langle V_2^{pol\dagger}(z_2) \right\rangle$$
$$\sim \frac{1}{z_1 s} \sim \frac{1}{z_2 s}$$

$$G_{10}(z_1) \sim \frac{\alpha_s C_F}{2\pi} \int \frac{dz_2}{z_2} \int \frac{dx_{21}^2}{x_{21}^2} G_{21}(z_2)$$

- Helicity evolution is double logarithmic, stronger than $\alpha_s \ln^2 \frac{1}{x} \sim 1$ unpolarized evolution
- Can strong quantum evolution reduce or offset the suppression of helicity at small x?

7/19

M. Sievert

Helicity Evolution: The Bottom Line

Soft polarized gluon splitting:

$$\theta(x_{10}^2 - x_{21}^2)$$

• Soft polarized quark splitting:

$$\theta(x_{10}^2 z - x_{21}^2 z')$$

Infrared phase space!

Soft unpolarized gluon splitting: $heta(x_{10}^2-x_{21}^2)$

The Need for Large-Nc Limit

- Helicity evolution leads to an infinite hierarchy of operators
- The large-Nc limit closes the hierarchy but neglects quarks
- But due to competing phase spaces, not all dipoles are independent!

Dependence on a neighbor dipole's size!

$$Tr[V_0V_1^{pol}^{\dagger}] \rightarrow \begin{cases} Tr[t^bV_0t^aV_1^{\dagger}](U_2^{pol})^{ba} \\ Tr[V_0V_1^{\dagger}]Tr[V_1V_2^{pol}^{\dagger}] \\ Tr[V_0V_2^{\dagger}]Tr[V_2V_1^{pol}^{\dagger}] \end{cases}$$

$$Tr[V_0 V_1^{pol\,\dagger}] \to \, Tr[V_0 V_1^{pol\,\dagger}]$$

M. Sievert

The Large-Nc Equations

$$\begin{split} \underline{G(x_{10}^2,z)} &= G^{(0)}(x_{10}^2,z) + \frac{\alpha_s N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^{z} \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\underline{\Gamma(x_{10}^2,x_{21}^2,z') + 3G(x_{21}^2,z')} \right] \\ \underline{\Gamma(x_{10}^2,x_{21}^2,z')} &= G^{(0)}(x_{10}^2,z') + \frac{\alpha_s N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^{z'} \frac{\frac{\min[x_{10}^2,x_{21}^2,z']}{z''}}{\int\limits_{\frac{1}{z''s}}^{\frac{\min[x_{10}^2,x_{21}^2,z']}{z''}} \frac{dx_{32}^2}{x_{32}^2} \left[\underline{\Gamma(x_{10}^2,x_{32}^2,z'') + 3G(x_{32}^2,z'')} \right] \end{split}$$

- System of equations for the dipole + "neighbor dipole"
- Neighbor dipole differs due to competing phase space constraints
- Initial conditions: $G^{(0)}(x_{10}^2, zs) = \frac{\alpha_s^2 C_F \pi}{N_c} [C_F \ln \frac{zs}{\Lambda^2} 2\ln(zs\,x_{10}^2)]$

Attempting an Analytical Solution

$$G(s_{10},\eta) = G^{(0)}(s_{10},\eta) + \int_{s_{10}}^{\eta} d\eta' \int_{s_{10}}^{\eta'} ds_{21} [\Gamma(s_{10},s_{21},\eta') + 3G(s_{21},\eta')]$$

$$\Gamma(s_{10},s_{21},\eta') = G^{(0)}(s_{10},\eta') + \int_{s_{10}}^{\eta'} d\eta'' \int_{\max[s_{10},s_{21}+\eta''-\eta']}^{\eta''} ds_{32} [\Gamma(s_{10},s_{32},\eta'') + 3G(s_{32},\eta'')]$$

- Change to rescaled logarithmic variables
- Standard technique: Laplace/Mellin transform + saddle point approximation

$$s_{ij} \equiv \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{1}{x_{ij}^2 \Lambda^2}$$
$$\eta^{(\prime, \, \prime\prime)} \equiv \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{z^{(\prime, \, \prime\prime)}}{\Lambda^2/s}$$

11/19

$$G(s_{10},\eta) = \int \frac{d\omega}{2\pi i} e^{\omega\eta} \int \frac{d\lambda}{2\pi i} e^{\lambda s_{10}} G_{\omega\lambda} \quad \longleftrightarrow \quad G_{\omega\lambda} = \int_{0}^{\infty} ds_{10} e^{-\lambda s_{10}} \int_{0}^{\infty} d\eta e^{-\omega\eta} G(s_{10},\eta)$$

• Fails because the neighbor dipole couples the arguments in Mellin space!

Resorting to a Numerical Solution

Resort to discretizing on a grid and solving numerically

$$\begin{aligned} \eta_i &= i \,\Delta\eta \\ s_j &= j \,\Delta\eta \end{aligned} \quad i, j = 0 \cdots N \qquad N = \frac{\eta_{max}}{\Delta\eta} \end{aligned}$$

 Choose endpoints to allow an iterative solution

$$G_{ij} = G_{ij}^{(0)} + \Delta \eta^2 \sum_{j'=i}^{j-1} \sum_{i'=i}^{j'} [\Gamma_{ii'j'} + 3G_{i'j'}]$$

$$\Gamma_{ikj} = G_{ij}^{(0)} + \Delta \eta^2 \sum_{j'=i}^{j-1} \sum_{i'=max[i,k+j'-j]}^{j'} [\Gamma_{ii'j'} + 3G_{i'j'}]$$

• For fixed grid parameters $(\Delta \eta, \eta_{max})$, we can calculate the polarized dipole starting from the initial conditions at $\eta = 0$.

Extracting the Small-x Asymptotics

- Evolve in η until the asymptotic power-law behavior sets in.
- Fit the slope of $\ln G$ in the upper 25% of the η range to extract the intercept (power) α_h .
- For a given set of grid parameters, we obtain the intercept

Extrapolating to the Continuum

- We can scan the grid parameter space up to a computational limit on the grid size: $N = \frac{\eta_{max}}{\Delta \eta} = 500$
- The physical point is $(\Delta \eta, \eta_{max}) \rightarrow (0, \infty)$
- Fit all "data points" to a continuous function $\alpha_h(\Delta\eta, \eta_{max})$
- Use an AIC-weighted average to extrapolate to the physical point.

Akaike, IEEE Transactions on Automatic Control, **19** (6) 716 (1974)

$$\alpha_h(\Delta\eta,\eta_{max}) = A(\Delta\eta) + B(\Delta\eta)^2 + C(\frac{1}{\eta_{max}}) + D(\frac{1}{\eta_{max}})^2$$

$$\vdots$$

$$\alpha_h(\Delta\eta,\eta_{max}) = A(\Delta\eta)^B + C(\Delta\eta)^D + E(\Delta\eta \times \frac{1}{\eta_{max}})^F$$

Our Result: The Small-x Tail

$$\Delta q(x, Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h}$$

$$g_1(x, Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h}$$

$$\Delta \Sigma(Q^2) \equiv \int_0^1 dx \,\Delta q(x, Q^2) \sim \int_0 dx \,\left(\frac{1}{x}\right)^{\alpha_h}$$
Intercept

• Our results (flavor-singlet , pure glue, large-Nc):

$$\alpha_h = 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

- Fixed coupling:
- First QCD constraint on the smallx limit of the helicity PDF's!
- Flavor non-singlet case does not couple to gluons (40% smaller)

$Q^2 = 3 GeV^2$	Q ² = 10 GeV ²
α _h = 0.936	$\alpha_{\rm h} = 0.797$

$$\alpha_h^{NS} = \sqrt{2} \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

15/19

A Surprising Discrepancy

• Our results (pure glue, large-Nc):

$$\alpha_h = 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

Bartels, Ermolaev, and Ryskin, Z. Phys. C72 (1996) 627

• **BER** (pure glue, Nc-independent):

 $\alpha_h = 3.66 \sqrt{\frac{\alpha_s N_c}{2\pi}}$

- Our intercept is 35% smaller than BER and generally integrable as $x \to 0$.
- A similar decrease is seen from the alltwist to leading-twist BFKL intercept....

$$\alpha_P - 1 = \frac{\alpha_s N_c}{\pi} 4 \ln 2 \qquad (\alpha_P - 1)_{L.T.} = \frac{\alpha_s N_c}{\pi}$$

for
$$Q^2=10 \ GeV^2$$

$$\Delta \Sigma = \int_0^1 dx \, \Delta q \sim \int_0^1 dx \left(\frac{1}{x}\right)^{0.80}$$

$$\Delta \Sigma = \int_0^1 dx \,\Delta q \sim \int_0 dx \,\left(\frac{1}{x}\right)^{1.26}$$

16 / 19

Implications for the Proton Spin Puzzle

- Our intercept can be combined with PDF fits to estimate the smallx contribution to the proton spin.
- The small-x tail can make a potentially large contribution!
- But... depends strongly on the approach to small x:
 - Onset of small-x behavior...
 - Assumptions about flavor symmetry in the sea...
 - Strange quark fragmentation functions...

17 / 19

M. Sievert

Conclusions

- Our numerical solution gives the first QCD constraints on the small-x asymptotics of helicity PDF's.
- The enhancement we find at small x is 35% smaller than in the literature.
- Can make a substantial contribution to the proton spin puzzle.
- This result needs to be incorporated from the ground level in the nextgeneration PDF fits.

Outlook: Future Directions

- Does the gluon helicity PDF have the same small-x intercept? (in progress)
- Include quarks by taking the large Nc + Nf limit. (cumbersome but straightforward)
- Leading-log evolution and saturation corrections (hard...)
- Finite-Nc corrections (hard...)
- Other polarization observables (the sky's the limit!)

19/19

Backup Slides:

Applications: Transversity and BSM Physics

 One interesting sector is the quark transversity distribution.
 Sum rule determines the proton tensor charge

A. Courtoy et al., Phys. Rev. Lett. **115** (2015) 162001 T. Bhattacharya et al., Phys. Rev. Lett. **115** (2015) 212002

- Tensor charge is sensitive to BSM physics through effective operators
 - Contribute to neutron EDM's
 - Mediate neutron beta decay
- Enhancement of transversity at small x?
 - Small-x evolution can help constrain the tensor charge.

Tensor Charge: $g_T^q(Q^2) = \int_0^1 dx \, \left[h_1^q(x,Q^2) - h_1^{\bar{q}}(x,Q^2)\right]$

Neutron EDM: $\langle n | \, \bar{\psi}(0) \, \sigma^{\mu\nu} \gamma^5 \, \psi(0) \, | n \rangle$

Neutron Beta Decay: \left

M. Sievert

Applications: Higher-Order Corrections

 Polarized evolution currently only accurate to the leading (double) log
 Can be systematically extended to higher orders

Important physical corrections:

 \geq Quark exchange (large N_c + N_f)

- NLL (single-log corrections and saturation)
- Running coupling (reduces enhancement)
- Any / all of these may be important before confidently matching to data.

Flavor-changing Wilson lines at finite N_c:

M. Sievert

What Do BER Do?

Bartels et al., Z. Phys. **C72** (1996) 627

- Attempt to re-sum mixed logarithms of x and Q². $(\alpha_s)^n [b_n(\ln(1/x))^{2n} + b_{n-1}(\ln(1/x))^{2n}]$
- They also have both ladder and non-ladder gluons (the primary source of our complexity)
- Their calculation uses Feynman gauge (we use light-cone gauge).

What are BER's Equations?

- Transform the spin-dependent part of the hadronic tensor to Mellin space:
- Write down "infrared evolution equations" in Mellin space:
- Obtained coupled matrix equations which can be solved analytically

fs⁺ Tihe dent Three amplitudes satisfy othe ave to the matter of the stand of the

BER's Solution

• They obtain an analytic expression, with the intercept determined by the eigenvalues of their matrices.

• But all the complexity $\frac{\omega_s^{3/2}}{\omega_s} = \frac{\omega_s^{3/2}}{\omega_s} \frac{\frac{2}{\omega_s} + \ln Q^2/\mu^2}{\omega_s} (\Delta g, \Delta \Sigma) R(\omega_s, Q^2) (\frac{1}{x})^{\omega_s \omega_s} (s_1 + z_s) O(\frac{\omega_s N_c Q^2 + \mu^2}{\ln 1/x}) (s_1 + z_s)^{\omega_s \omega_s} (s_1 + z_s) O(\frac{\omega_s N_c Q^2 + \mu^2}{\ln 1/x}) (s_1 + z_s)^{\omega_s \omega_s} (s_1 + z_s) O(\frac{\omega_s N_c Q^2 + \mu^2}{\ln 1/x}) (s_1 + z_s)^{\omega_s \omega_s} (s_1 + z_s) O(\frac{\omega_s N_c Q^2 + \mu^2}{\omega_s}) (s_1 + z_s)^{\omega_s \omega_s} (s_1 + z_s) O(\frac{\omega_s N_c Q^2 + \mu^2}{\omega_s}) (s_1 + z_s)^{\omega_s \omega_s} (s_1 + z_s) O(\frac{\omega_s N_c Q^2 + \mu^2}{\omega_s}) (s_1 + z_s)^{\omega_s \omega_s} (s_1 +$

• We agree on the ladder part, but we seem to include additional diagrams which lead to a larger effect.

Diagrammatic Discrepancies

M. Sievert

Anomalous Dimensions

They reproduce the DGLAP anomalous dimensions to NLO (and beyond)...

$$\gamma_S^{(1)} = \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{1}{\omega^3} \begin{pmatrix} 32C_A^2 - 16C_F T_f & -16C_A T_f - 8C_F T_f \\ 16C_A C_F + 8C_F^2 & 4C_F^2 - 16C_F T_f + \frac{8C_F}{N} \end{pmatrix}$$

• We also reproduce the G/G anomalous dimension in the large-Nc limit...

is paper is the power-like pehavior pt adding) p(cov)r is by a facto $82\sqrt{6}$ large to the t-channel glucture states, which

- Whatever diagrams they exclude do not miss any leading logarithms of Q²...
- Perhaps our disagreement is over higher-twist corrections? That would explain our 35% smaller intercept....
 - > Unpolarized sector: $\frac{1}{4 \ln 2} \approx 36\%$