Quark Polarization at Small x

Matthew D. Sievert

with Yuri Kovchegov
and Daniel Pitonyak

PennState

Berks
$7^{\text {th }}$ Workshop of the APS Topical Group on Hadron Physics Washington, D.C. Thu. Feb. 2, 2017

Overview: The Main Message

- Helicity PDF's obey novel, intricate small-x quantum evolution equations.

- Small-x evolution leads to a potentially sizeable contribution to the proton spin.

Yuri V. Kovchegov, Daniel Pitonyak, M.S., Phys. Rev. D95 (2017) 014033
Yuri V. Kovchegov, Daniel Pitonyak, M.S., Phys. Rev. Lett. 118 (2017) 052001

Motivation: The Small-x Limit of PDF's

Dulat et al., Phys. Rev. D93 (2016) no. 3033006

- Unpolarized PDF's show a power-law growth of gluons and sea quarks at small x due to (BFKL) quantum evolution.
- The cascade of small-x gluons drives up the color-charge density, enhancing multiple scattering.
- The high-density limit is characterized by the saturation of the gluon distribution.

M.S., Ph.D. Thesis, arXiv:1407.4047

Motivation: Helicity PDF's at Small x

- In contrast, helicity PDF's are suppressed with power-law tails.
- The small-x evolution of helicity PDF's was studied by BER, predicting a growth at small x

Bartels, Ermolaev, and Ryskin, Z. Phys. C72 (1996) 627

$$
x \Delta q \sim\left(\frac{1}{x}\right)^{0.2} \text { for } Q^{2}=10 G e V^{2}
$$

- Could the small-x region make an important contribution to the proton spin?
- Could saturation physics be relevant?
de Florian et al., Phys. Rev. D80 (2009) 034030

adapted from Aschenauer et al., Phys. Rev. D92 (2015) no. 9094030

Polarized DIS at Small x

- In DIS at small x, quark dipole scattering dominates over quark "knockout".

- PDF's at small x are described by dipole scattering amplitudes.
$g_{1}\left(x, Q^{2}\right)=\int d r^{-} e^{i x p^{+} r^{-}}\langle p S| \bar{\psi}(0) \frac{\gamma^{+} \gamma^{5}}{2} \psi(r)|p S\rangle$

- Polarized PDF's at small x are described by polarized dipole scattering amplitudes.

$$
V_{x_{\perp}}(\sigma)=V_{x_{\perp}}+\sigma V_{x_{\perp}}^{p o l}
$$

$$
\begin{aligned}
& V_{x_{\perp}}=\mathcal{P} \exp \left[i g \int d x^{+} \hat{A}^{-}\left(x^{+}, 0^{-}, x_{\perp}\right)\right] \\
& V_{x_{\perp}}^{\text {pol }} \neq \mathcal{P} \exp \left[i g \int d x^{+} \hat{A}^{-}\left(x^{+}, 0^{-}, x_{\perp}\right)\right]
\end{aligned}
$$

The Polarized Dipole Amplitude

- Calculate the polarized dipole amplitude by relating it to a dipole cross-section.

- Explicitly scale out energy suppression of initial conditions:

$$
\begin{aligned}
G_{10} & \equiv \frac{1}{2 N_{c}}\left\langle\left\langle\operatorname{Tr}\left[V_{0} V_{1}^{p o l} \dagger+V_{1}^{p o l} V_{0}^{\dagger}\right]\right\rangle\right\rangle \\
& =-\frac{z s}{2}\left[\frac{d \sigma}{d^{2} b}\left(q_{0}^{u n p}, \Delta \bar{q}_{1}\right)+\frac{d \sigma}{d^{2} b}\left(\Delta q_{1}, \bar{q}_{0}^{u n p}\right)\right]
\end{aligned}
$$

 to quantum evolution.

$$
\vec{x}_{\perp, i j} \equiv \vec{x}_{\perp, i}-\vec{x}_{\perp, j}
$$

$$
G^{(0)}\left(x_{10}^{2}, z s\right)=\frac{\alpha_{s}^{2} C_{F} \pi}{N_{c}}\left[C_{F} \ln \frac{z s}{\Lambda^{2}}-2 \ln \left(z s x_{10}^{2}\right)\right]
$$

Origins of Helicity Evolution

- Helicity evolution is driven by parton splitting functions which transfer spin to small x .

$$
\begin{array}{rl}
\langle\underbrace{\text { pol } \dagger}_{1}\left(z_{1}\right)\rangle & \sim \int \frac{1}{z_{1} s} \\
z_{2} & d z_{2} x_{2}\left(\frac{\alpha_{s} C_{F}}{2 \pi^{2}} \frac{z_{2}}{z_{1}} \frac{1}{x_{21}^{2}}\right) \underbrace{\left\langle V_{2}^{\text {pol } \dagger}\left(z_{2}\right)\right\rangle}_{\sim \frac{1}{z_{2} s}} \\
\quad G_{10}\left(z_{1}\right) & \sim \frac{\alpha_{s} C_{F}}{2 \pi} \int \frac{d z_{2}}{z_{2}} \int \frac{d x_{21}^{2}}{x_{21}^{2}} G_{21}\left(z_{2}\right)
\end{array}
$$

- Helicity evolution is double logarithmic, stronger than

$$
\alpha_{s} \ln ^{2} \frac{1}{x} \sim 1
$$ unpolarized evolution

- Can strong quantum evolution reduce or offset the suppression of helicity at small x?
adapted from Aschenauer et al., Phys. Rev. D92 (2015) no. 9094030

Helicity Evolution: The Bottom Line

- Soft polarized gluon splitting: $\quad \theta\left(x_{10}^{2}-x_{21}^{2}\right)$
- Soft polarized quark splitting:

$$
\theta\left(x_{10}^{2} z-x_{21}^{2} z^{\prime}\right) \quad \begin{gathered}
\text { Infrared } \\
\text { phase space! }
\end{gathered}
$$

- Soft unpolarized gluon splitting: $\theta\left(x_{10}^{2}-x_{21}^{2}\right)$

The Need for Large-Nc Limit

$\frac{\partial}{\partial \ln z}$

- Helicity evolution leads to an infinite hierarchy of operators $\operatorname{Tr}\left[V_{0} V_{1}^{\text {pol } \dagger}\right] \rightarrow\left\{\begin{array}{l}\operatorname{Tr}\left[t^{b} V_{0} t^{a} V_{1}^{\dagger}\right]\left(U_{2}^{\text {pol }}\right)^{b a} \\ \operatorname{Tr}\left[V_{0} V_{1}^{\dagger}\right] \operatorname{Tr}\left[V_{1} V_{2}^{\text {pol } \dagger}\right] \\ \operatorname{Tr}\left[V_{0} V_{2}^{\dagger}\right] \operatorname{Tr}\left[V_{2} V_{1}^{\text {pol } \dagger}\right]\end{array}\right.$
- The large-Nc limit closes the hierarchy but neglects quarks

$$
\operatorname{Tr}\left[V_{0} V_{1}^{\text {pol } \dagger}\right] \rightarrow \operatorname{Tr}\left[V_{0} V_{1}^{\text {pol } \dagger}\right]
$$

- But due to competing phase spaces, not all dipoles are independent!

Dependence on a neighbor dipole's size!

$x_{32}^{2} z^{\prime \prime} \ll x_{21}^{2} z^{\prime}$
vs. $\quad x_{32} \ll x_{02}^{2}$

The Large-Nc Equations

$$
\begin{aligned}
& \left.\underline{G\left(x_{10}^{2}, z\right)}=G^{(0)}\left(x_{10}^{2}, z\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{\frac{1}{x_{10}^{2} s}}^{\frac{z}{z^{\prime}}} \int_{\frac{1}{z^{\prime} s}}^{\int_{21}^{\prime}} \frac{d x_{21}^{2}}{x_{21}^{2}} \underline{\underline{\Gamma\left(x_{10}^{2}, x_{21}^{2}, z^{\prime}\right)}}+3 \underline{3\left(x_{21}^{2}, z^{\prime}\right)}\right]
\end{aligned}
$$

- System of equations for the dipole + "neighbor dipole"
- Neighbor dipole differs due to competing phase space constraints
- Initial conditions: $\quad G^{(0)}\left(x_{10}^{2}, z s\right)=\frac{\alpha_{s}^{2} C_{F} \pi}{N_{c}}\left[C_{F} \ln \frac{z s}{\Lambda^{2}}-2 \ln \left(z s x_{10}^{2}\right)\right]$

Attempting an Analytical Solution

$$
\begin{aligned}
G\left(s_{10}, \eta\right) & =G^{(0)}\left(s_{10}, \eta\right)+\int_{s_{10}}^{\eta} d \eta^{\prime} \int_{s_{10}}^{\eta^{\prime}} d s_{21}\left[\Gamma\left(s_{10}, s_{21}, \eta^{\prime}\right)+3 G\left(s_{21}, \eta^{\prime}\right)\right] \\
\Gamma\left(s_{10}, s_{21}, \eta^{\prime}\right) & =G^{(0)}\left(s_{10}, \eta^{\prime}\right)+\int_{s_{10}}^{\eta^{\prime}} d \eta^{\prime \prime} \int_{\max \left[s_{10}, s_{21}+\eta^{\prime \prime}-\eta^{\prime}\right]}^{\eta^{\prime \prime}} d s_{32}\left[\Gamma\left(s_{10}, s_{32}, \eta^{\prime \prime}\right)+3 G\left(s_{32}, \eta^{\prime \prime}\right)\right]
\end{aligned}
$$

- Change to rescaled logarithmic variables
- Standard technique: Laplace/Mellin transform + saddle point approximation

$$
\begin{aligned}
s_{i j} & \equiv \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{1}{x_{i j}^{2} \Lambda^{2}} \\
\eta^{(\prime, \prime \prime)} & \equiv \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{\left.z^{(\prime, \prime \prime}\right)}{\Lambda^{2} / s}
\end{aligned}
$$

$$
G\left(s_{10}, \eta\right)=\int \frac{d \omega}{2 \pi i} e^{\omega \eta} \int \frac{d \lambda}{2 \pi i} e^{\lambda s_{10}} G_{\omega \lambda} \longleftrightarrow G_{\omega \lambda}=\int_{0}^{\infty} d s_{10} e^{-\lambda s_{10}} \int_{0}^{\infty} d \eta e^{-\omega \eta} G\left(s_{10}, \eta\right)
$$

- Fails because the neighbor dipole couples the arguments in Mellin space!

Resorting to a Numerical Solution

- Resort to discretizing on a grid and solving numerically

$$
\begin{aligned}
\eta_{i} & =i \Delta \eta \\
s_{j} & =j \Delta \eta
\end{aligned} \quad i, j=0 \cdots N \quad N=\frac{\eta_{\max }}{\Delta \eta}
$$

- Choose endpoints to allow an iterative solution

$$
\begin{aligned}
G_{i j} & =G_{i j}^{(0)}+\Delta \eta^{2} \sum_{j^{\prime}=i}^{j-1} \sum_{i^{\prime}=i}^{j^{\prime}}\left[\Gamma_{i i^{\prime} j^{\prime}}+3 G_{i^{\prime} j^{\prime}}\right] \\
\Gamma_{i k j} & =G_{i j}^{(0)}+\Delta \eta^{2} \sum_{j^{\prime}=i=i i^{\prime}=\max \left[i, k+j^{\prime}-j\right]}\left[\Gamma_{i i^{\prime} j^{\prime}}+3 G_{i^{\prime} j^{\prime}}\right]
\end{aligned}
$$

- For fixed grid parameters $\left(\Delta \eta, \eta_{\max }\right)$, we can calculate the polarized dipole starting from the initial conditions at $\eta=0$.

Extracting the Small-x Asymptotics

Intercept for G

Intercept

- Evolve in η until the asymptotic power-law behavior sets in.
- Fit the slope of $\ln G$ in the upper 25% of the η range to extract the intercept (power) α_{h}.
- For a given set of grid parameters, we obtain the intercept

$$
G(z s) \sim \exp \left[\sqrt{\frac{2 \pi}{\alpha_{s} N_{c}}} \alpha_{h} \eta\right] \sim(z s)^{\alpha_{h}}
$$

$$
\downarrow
$$

$$
\alpha_{h}=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \frac{\partial}{\partial \eta} \ln G
$$

$$
\alpha_{h}\left(\Delta \eta, \eta_{\max }\right)
$$

Extrapolating to the Continuum

- We can scan the grid parameter space up to a computational limit on the grid size: $N=\frac{\eta_{\max }}{\Delta \eta}=500$
- The physical point is $\left(\Delta \eta, \eta_{\max }\right) \rightarrow(0, \infty)$

- Fit all "data points" to a continuous function $\alpha_{h}\left(\Delta \eta, \eta_{\max }\right)$

$$
\begin{aligned}
\alpha_{h}\left(\Delta \eta, \eta_{\text {max }}\right) & =A(\Delta \eta)+B(\Delta \eta)^{2} \\
& +C\left(\frac{1}{\eta_{\max }}\right)+D\left(\frac{1}{\eta_{\text {max }}}\right)^{2}
\end{aligned}
$$

- Use an AIC-weighted average to extrapolate to the physical point.

$$
\begin{aligned}
\alpha_{h}\left(\Delta \eta, \eta_{\max }\right) & =A(\Delta \eta)^{B}+C(\Delta \eta)^{D} \\
& +E\left(\Delta \eta \times \frac{1}{\eta_{\max }}\right)^{F}
\end{aligned}
$$

Our Result: The Small-x Tail

$$
\begin{aligned}
\Delta q\left(x, Q^{2}\right) & \left.\sim\left(\frac{1}{x}\right)^{\alpha_{h}}\right) \\
g_{1}\left(x, Q^{2}\right) & \sim\left(\frac{1}{x}\right)^{\alpha_{h}} \\
\Delta \Sigma\left(Q^{2}\right) \equiv \int_{0}^{1} d x \Delta q\left(x, Q^{2}\right) & \sim \int_{0} d x\left(\frac{1}{x}\right)^{\alpha_{h}}
\end{aligned}
$$

- Our results (flavor-singlet , pure glue, large-Nc):

$$
\alpha_{h}=2.31 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}
$$

- Fixed coupling:
- First QCD constraint on the smallx limit of the helicity PDF's!

$\mathrm{Q}^{2}=3 \mathrm{GeV}^{2}$	$\mathrm{Q}^{2}=10 \mathrm{GeV}^{2}$
$\alpha_{\mathrm{h}}=0.936$	$\alpha_{\mathrm{h}}=0.797$

- Flavor non-singlet case does not couple to gluons (40\% smaller)

$$
\alpha_{h}^{N S}=\sqrt{2} \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}
$$

A Surprising Discrepancy

- Our results (pure glue, large-Nc):

$$
\alpha_{h}=2.31 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}
$$

Bartels, Ermolaev, and Ryskin, Z. Phys. C72 (1996) 627

- BER (pure glue, Nc-independent):

$$
\alpha_{h}=3.66 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}
$$

$$
\text { for } Q^{2}=10 \mathrm{GeV}^{2}
$$

- Our intercept is 35% smaller than BER and generally integrable as $x \rightarrow 0$.
$\Delta \Sigma=\int_{0}^{1} d x \Delta q \sim \int_{0} d x \underline{\text { Us: }}$ converges! $^{\left(\frac{1}{x}\right)^{0.80}}$
- A similar decrease is seen from the alltwist to leading-twist BFKL intercept....
$\Delta \Sigma=\int_{0}^{1} d x \Delta q \sim \int_{0} d x\left(\frac{1}{x}\right)^{1.26}$

Implications for the Proton Spin Puzzle

- Our intercept can be combined with PDF fits to estimate the smallx contribution to the proton spin.
- The small-x tail can make a potentially large contribution!

- But... depends strongly on the approach to small x:
> Onset of small-x behavior...
> Assumptions about flavor symmetry in the sea...
> Strange quark fragmentation functions...

Adolph et al., Phys. Lett. $B 753$
(2016) 18

de Florian et al., Phys. Rev. D80
(2009) 034030

Conclusions

- Our numerical solution gives the first QCD constraints on the small-x asymptotics of helicity PDF's.
- The enhancement we find at small x is 35% smaller than in the literature.

Outlook: Future Directions

- Does the gluon helicity PDF have the same small-x intercept? (in progress)
- Include quarks by taking the large Nc + Nf limit. (cumbersome but straightforward)
- Leading-log evolution and saturation corrections (hard...)
- Finite-Nc corrections (hard...)
- Other polarization observables (the sky's the limit!)

Backup Slides:

Applications: Transversity and BSM Physics

- One interesting sector is the quark transversity distribution.
$>$ Sum rule determines the proton tensor charge
A. Courtoy et al., Phys. Rev. Lett. 115 (2015) 162001
T. Bhattacharya et al., Phys. Rev. Lett. 115 (2015) 212002
- Tensor charge is sensitive to BSM physics through effective operators
$>$ Contribute to neutron EDM's
> Mediate neutron beta decay

Tensor Charge:

$$
g_{T}^{q}\left(Q^{2}\right)=\int_{0}^{1} d x\left[h_{1}^{q}\left(x, Q^{2}\right)-h_{1}^{\bar{q}}\left(x, Q^{2}\right)\right]
$$

Neutron EDM:

- Enhancement of transversity at

$$
\langle n| \bar{\psi}(0) \sigma^{\mu \nu} \gamma^{5} \psi(0)|n\rangle
$$ small x ?

$>$ Small-x evolution can help constrain the tensor charge.

Neutron Beta Decay:

$$
\langle p| \bar{u}(0) \sigma^{\mu \nu} \gamma^{5} d(0)|n\rangle
$$

Applications: Higher-Order Corrections

- Polarized evolution currently only accurate to the leading (double) log
$>$ Can be systematically extended to higher orders
- Important physical corrections:
$>$ Quark exchange (large $\mathrm{N}_{\mathrm{c}}+\mathrm{N}_{\mathrm{f}}$)
$>$ NLL (single-log corrections and saturation)
> Running coupling (reduces enhancement)
- Any / all of these may be important before confidently matching to data.

Flavor-changing Wilson lines at finite N_{c} :

Fixed vs. Running BK Evolution:

What Do BER Do?

- Attempt to re-sum mixed logarithms of x and Q^{2}.
$\left(\alpha_{s}\right)^{n}\left[b_{n}(\ln (1 / x))^{2 n}+b_{n-1}(\ln (1 / x))^{2 n-1} \ln \left(Q^{2} / \mu^{2}\right)+\ldots+b_{0}(\ln (1 / x))^{n}\left(\ln \left(Q^{2} / \mu^{2}\right)\right)^{n}\right.$
- They also have both ladder and non-ladder gluons (the primary source of our complexity)
- Their calculation uses Feynman gauge (we use light-cone gauge).

What are BER's Equations?

- Transform the spin-dependent part of the hadronic tensor to Mellin space:

$$
T_{3}=\int_{-i \infty}^{i \infty} \frac{d \omega}{2 \pi i}\left(\frac{s}{\mu^{2}}\right)^{\omega} \xi(\omega) R(\omega, y)
$$

- Write down "infrared evolution equations" in Mellin space:

$$
\left(\omega+\frac{\partial}{\partial y}\right) R=\frac{1}{8 \pi^{2}} F_{0} R \quad y=\ln \left(\frac{Q^{2}}{\mu^{2}}\right)
$$

- Obtained coupled matrix equations which can be solved analytically

$$
F_{0}=\left(\begin{array}{c}
F_{g g} F_{q g} \\
F_{g q} \\
F_{q q}
\end{array}\right) \quad M_{0}=\left(\begin{array}{cc}
4 C_{A} & -2 T_{f} \\
2 C_{F} & C_{F}
\end{array}\right)
$$

$$
F_{0}(\omega)=\frac{g^{2}}{\omega} M_{0}-\frac{g^{2}}{2 \pi^{2} \omega^{2}} G_{0} F_{8}(\omega)+\frac{1}{8 \pi^{2} \omega} F_{0}(\omega)^{2}
$$

$$
G_{0}=\left(\begin{array}{cc}
C_{A} & 0 \\
0 & C_{F}
\end{array}\right) \quad M_{8}=\left(\begin{array}{cc}
2 C_{A} & -T_{f} \\
C_{A} & -1 / 2 N
\end{array}\right)
$$

$$
F_{8}=\frac{g^{2}}{\omega} M_{8}+\frac{g^{2} C_{A}}{8 \pi^{2} \omega} \frac{d}{d \omega} F_{8}(\omega)+\frac{1}{8 \pi^{2} \omega} F_{8}(\omega)^{2}
$$

BER's Solution

- They obtain an analytic expression, with the intercept determined by the eigenvalues of their matrices.

$$
g_{1}\left(x, Q^{2}\right)=\frac{\omega_{s}^{3 / 2}}{8 \sqrt{2 \pi}} \frac{\frac{2}{\omega_{s}}+\ln Q^{2} / \mu^{2}}{(\ln (1 / x))^{3 / 2}}(\Delta g, \Delta \Sigma) R\left(\omega_{s}, y\right)\left(\frac{1}{x} \omega^{\omega_{s}}\left(1+O\left(\frac{\ln ^{2} Q^{2} / \mu^{2}}{\ln 1 / x}\right)\right)\right.
$$

- But all the complexity actually only leads to a small effect compared to the ladder graphs.

Ladder only:

$$
\begin{array}{ll}
z_{s}=3.81 & \left(n_{f}=4\right) \\
z_{s}=4 & \text { pure glue }
\end{array}
$$

- We agree on the ladder part, but we seem to include additional diagrams which lead to a larger effect.

Diagrammatic Discrepancies

Anomalous Dimensions

- They reproduce the DGLAP anomalous dimensions to NLO (and beyond)...

$$
\gamma_{S}^{(1)}=\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \frac{1}{\omega^{3}}\left(\begin{array}{cc}
32 C_{A}^{2}-16 C_{F} T_{f} & -16 C_{A} T_{f}-8 C_{F} T_{f} \\
16 C_{A} C_{F}+8 C_{F}^{2} & 4 C_{F}^{2}-16 C_{F} T_{f}+\frac{8 C_{F}}{N}
\end{array}\right)
$$

- We also reproduce the G/G anomalous dimension in the large-Nc limit...

$$
\gamma_{S, G G}^{(1)}(\omega)=\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} 8 N_{c}^{2} \frac{1}{\omega^{3}}
$$

- Whatever diagrams they exclude do not miss any leading logarithms of Q^{2}...
- Perhaps our disagreement is over higher-twist corrections?

That would explain our 35\% smaller intercept....
$>$ Unpolarized sector: $\frac{1}{4 \ln 2} \approx 36 \%$

