Speaker
Description
Spectroscopic information from scattering experiments is typically extracted using partial-wave analysis methods.
Such an analysis is performed in bins of the final-state mass. In a second step, the information from the different mass bins is then combined through fits based on physics models. The large number of free parameters in such analyses leads to fluctuations (noise) across the mass range, which may correlate among different waves. We present a new method, in which we assume continuity in the final-state mass of the underlying signal in order to reduce noise on the fits.
We implemented this method using the NIFTy framework for Numerical Information Field Theory, originally conceived for analysis of astrophysical data. We will explain the underlying ideas and methods, present studies using simulated data and first application to data from the COMPASS experiment.