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Introduction: Streaming Readout (SRO)
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The Paradigm Shift

◦ Triggered DAQ: Decisions made in hardware; only selected data is read out.

◦ Streaming Readout: Continuous, ”triggerless” data stream; all signals are timestamped and moved to a compute
buffer.

Conceptual Workflow: Front-End → Network → Software Farm

▷ Real-time Analysis: Eliminates hardware deadtime; Access data from all detectors when making
decisions.

▷ Software Flexibility: Complex algorithms (e.g., AI/ML) can be applied to enhance performance

▷ Standard for EIC: SRO is the baseline for the Electron-Ion Collider to maximize physics reach.



JLab SRO Tests: Validating the Paradigm

3 / 20

Jlab SRO tests

◦ On-Beam test at Hall B (CLAS12), Hall D (GlueX).

◦ Reproduced σE in trigger modes and tested AI algorithm.

▷ Need new techniques for identifying complex event topologies over
the background embedded within the continuous data flow

▷ Need to demonstrate AI algorithm for improving the identification of
events of interest in high-background environments
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Hall C

▷ As a first step existing data of the NPS RG1A experiments, e.g., E12-13-010/007 taken with a loose (VTP)
trigger allow for training and optimizing an AI filtering algorithm

▷ replicated for the full SRO, e.g., in the next phase of NPS experiments



Hardware for SRO : fADC250 and VTP module
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Jlab FADC250

◦ general purpose triggered readout
detector

◦ adapted for SRO by utilizing the VXS
serial links

◦ charge integration around pulses and
send to VTP module

VXS Trigger Processor (VTP) Module

◦ support 16 FADC250 modules, FPGA-based data
processing

◦ fiber optics serial links to other crates

◦ 1Gbps Ethernet connection for configuration, 10/40Gbps
Ethernet for CODA ROC readout

◦ high speed readout can be used to read from compatible
Jlab VXS electronics



Cluster reconstruction from RAW waveform
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Emulate fADC250 processing

◦ fADC250 readout window : 440 ns (110 samples)

◦ Start from RAW waveform

◦ Pulse finding by leading edge algorithm

◦ Pulse time used later as the cluster time

◦ VME software-configured windows NSA,NSB

Pulse integral = GAIN ·
n+NSA−1∑
n=N−NSB

(WF[n]− ped.)

Parameter Value Unit

GAIN 0.598 MeV/ADC unit

TET 20 ADC unit

PED ∼ 400 ADC unit

NSA 12 ns

NSB 36 ns

Notes:
– TET is defined relative to the pedestal.
– PED is channel dependent.



Clustering from RAW waveform : VTP
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What VTP module sees :

◦ Energies and rise times of each pulses

◦ Full 1µs window as opposed to 440 ns

For each 3x3 grid :

◦ Filter out pulses within 20 ns window. Triggered if
▷ At least 1 hit
▷ Eseed > 150 MeV
▷ Eseed is local maximum



ML Task Definition

ML Model
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◦ Input : Point Cloud of signals with the Waveform as features.
▷ pedestal provided to the model, either from VME config or calibration.

◦ Truth : Cluster IDs, either from VTP or HCana reconstruction.

◦ Goal : Reconstruct clusters directly from RAW waveforms.



Progress

Table: Status of Data Extraction and Machine Learning Implementation

Data Source Extracted ML Ready Implementation Notes

VTP Reconstruction ✓ — Existing algorithm used
HCANA Reconstruction ✓ ✓ Cluster seed recognized
Geant4 Simulation — — Not yet initiated
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Note: Detail of the Geant4 Simulation can be found in Avnish’s talk earlier (15:15).



Object Condensation
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Eur. Phys. J. C 80, 886 (2020)

Latent space distribution

Attractive loss

Vattr(x) = ||x− xseed︸ ︷︷ ︸ ||2qseed,k
◦ Signals associated to the same cluster are

pulled towards their cluster seed in latent
space.

◦ minimize latent x distance for points (k) in each
cluster.

Repulsive loss

Vrepul(x) = max(0, λ− ||x− xβ ||)qβk

◦ Signals from different objects are pushed away

◦ minimized signals from different clusters are
well-separated.
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Object Condensation
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Latent space distribution

Coward Loss

Vcoward =
1

K

∑
i

(1− βi)

◦ apply to true cluster seeds only

◦ encourage cluster seeds to have high β ≈ 1

Repulsive loss

Vnoise = sB︸︷︷︸
s/n ratio

∑
i

niβi

◦ apply to background / noise nodes only

◦ regularize backgrounds to stay β ≈ 0
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Object Condensation
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Eur. Phys. J. C 80, 886 (2020)

Total Loss function

L = aVattr + bVrepul + cVcoward + dVnoise

▷ Carefully tune hyperparameters a, b, c, d to balance different
loss terms.



Architecture : Encoding Waveform
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Object Condensation

◦ Input pedestal-subtracted waveform, di-
mension [1080 channels][110 samples]

◦ Embed waveform sample into higher di-
mension.

◦ Long-Short Term Memory (LSTM) network
compresses WF into latent feature vectors.

◦ Usual features in literature : peak time,
pulse integral, rise time, fall time,
FWHM, number of peaks, etc.

◦ Down-Sampling the background waveform
to reduce memory overhead.
▷ For each WF associated with a cluster,

keep 3− 5 WFs associated with noise.



Architecture : GravNet
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Object Condensation

GravNet Layer

◦ takes the NPS geometry

◦ project to
▷ coordinate in latent space
▷ feature space for each vertex

◦ build kNN graph → aggregate features
from neighbors scaled by Gravitational po-
tential !
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◦ used as Positional encoding in down-
stream attention layers



Architecture
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Object Condensation

Attention Layers

◦ Input : learned geometry from GravNet +
latent WF features

◦ Assign attention scores → correlate differ-
ent channels

Object Condensation Head

◦ Compress into object representation
▷ latent space coordinate x ∈ R2

▷ Cluster seedness score β ∈ (0.0, 1.0)

◦ Use Object Condensation loss to train the
model.



Result
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Total Loss function

L = aVattr + bVrepul + cVcoward + dVnoise

▷ Carefully tune hyperparameters a, b, c, d to balance different
loss terms.

▷ Gradual decrease of Vrepul, Vnoise, Vcoward in-
dicates
▷ points from different clusters are well-

separated
▷ separate real signals from noise
▷ recognize center of cluster

▷ Flat Vattr indicates inability to recognize points
from the same cluster !



Inference Procedure
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Recall Model Outputs

◦ Latent space coordinate x ∈ R2

◦ Cluster seedness score β ∈ (0.0, 1.0)

Clustering procedure

1 Choose hyperparameters βthreshold, dthreshold

2 Select points with β > βthreshold as cluster seeds

3 Assign cluster membership based on distance in latent
space d

4 Reject and mark as noise if d > dthreshold.



Inference Result
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✓ Able to recognize cluster seeds and background noise.
× Unable to pull points from the same cluster → data overwhelmed by singleton clusters.



Summary and Outlook
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Summary

✓ Developed ML-based cluster reconstruc-
tion for NPS.

✓ Successfully separated noise and identi-
fied cluster seeds.

✓ Data Status: Reconstructed VTP FPGA-
triggered cluster memberships are ready
for ML training.

Outlook

→ Verification: Test on Geant4 simulated
clusters using high-level features.

→ EIC SRO: Construct streaming readout
frames composed of 2µs windows.

→ Model: Pivot to transfer learning by de-
coupling waveform encoding and clus-
tering steps.

�JeffersonLab/nps-sro-ml

Thank you for your attention!

https://github.com/JeffersonLab/nps-sro-ml

