Hall C Winter Collaboration Meeting 2026
Flash talk : AI/ML model development using Hall C
NPS data

Chi-Kin Tam (CUA)
Collaboration : Brad Sawatzky, Dmitry Romanov, Tanja Hornt, Joshua Crafts, Baptiste Fraisse

tamc@cua.edu / ckin@jlab.org

e CATHOLIC
UNIVERSITY J ff/_gon N _%‘

OF AMERICA ML ]
" Lab



Introduction: Streaming Readout (SRO) N P%ﬁ

The Paradigm Shift
o Triggered DAQ: Decisions made in hardware; only selected data is read out.

o Streaming Readout: Continuous, "triggerless” data stream; all signals are timestamped and moved to a compute
buffer.

101010
_.\,_ Continuous

Al/ML Processing Storage & Physics Analysis
(GPU / FPGA / CPU)

Conceptual Workflow: Front-End — Network — Software Farm

> Real-time Analysis: Eliminates hardware deadtime; Access data from all detectors when making
decisions.
> Software Flexibility: Complex algorithms (e.g., Al/ML) can be applied to enhance performance
> Standard for EIC: SRO is the baseline for the Electron-lon Collider to maximize physics reach.
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JLab SRO Tests: Validating the Paradigm

Jlab SRO tests
o On-Beam test at Hall B (CLAS12), Hall D (GlueX).
o Reproduced o in trigger modes and tested Al algorithm.

> Need new techniques for identifying complex event topologies over
the background embedded within the continuous data flow

> Need to demonstrate Al algorithm for improving the identification of
events of interest in high-background environments

> As a first step existing data of the NPS RG1A experiments, e.g., E12-13-010/007 taken with a loose (VTP)
trigger allow for training and optimizing an Al filtering algorithm
> replicated for the full SRO, e.g., in the next phase of NPS experiments
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Hardware for SRO : fADC250 and VTP module NP%%

Jlab FADC250

o general purpose triggered readout
detector

o adapted for SRO by utilizing the VXS
serial links

o charge integration around pulses and
send to VTP module

VXS Trigger Processor (VTP) Module

o

support 16 FADC250 modules, FPGA-based data
processing

fiber optics serial links to other crates

1Gbps Ethernet connection for configuration, 10/40Gbps
Ethernet for CODA ROC readout

high speed readout can be used to read from compatible
Jlab VXS electronics

Figure 2a: VIP Hardware Block Diagram
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Cluster reconstruction from RAW waveform N %ﬁw
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e e e e GAIN 0.598  MeV/ADC unit
4006 50 100150200 250 300 350 400 TET 20 ADC unit
time [ns] PED ~400  ADC unit
Emulate fADC250 processing NSA 12 ns
o fADC250 readout window : 440 ns (110 samples) NSB 36 ns
o Start from RAW waveform
o Pulse finding by leading edge algorithm Notes:

o Pulse time used later as the cluster time — TET is defined relative to the pedestal.
— PED is channel dependent.

o VME software-configured windows NSA, NSB
9 5/20



Clustering from RAW waveform : VTP

What VTP module sees :
o Energies and rise times of each pulses
o Full 1 us window as opposed to 440 ns
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For each 3x3 grid :
o Filter out pulses within 20 ns window. Triggered if

> Atleast 1 hit
> Fgeeq > 150 MeV
> FEgeeq IS local maximum
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ML Task Definition NP

N

o Input : Point Cloud of signals with the Waveform as features.

> pedestal provided to the model, either from VME config or calibration.
o Truth : Cluster IDs, either from VTP or HCana reconstruction.
o Goal : Reconstruct clusters directly from RAW waveforms.
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Progress N P

Table: Status of Data Extraction and Machine Learning Implementation

Data Source Extracted ML Ready Implementation Notes

VTP Reconstruction v — Existing algorithm used
HCANA Reconstruction v v Cluster seed recognized
Geant4 Simulation — — Not yet initiated

Note: Detail of the Geant4 Simulation can be found in Avnish’s talk earlier (15:15).
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Object Condensation

Attractive loss

Vattr(x) = ||$ — Tseed H2QSeed,k
——

o Signals associated to the same cluster are
pulled towards their cluster seed in latent
space.

o minimize latent z distance for points (k) in each
cluster.

Repulsive loss
Viepu(#) = max(0, A — ||z — z5][)gsk

o Signals from different objects are pushed away

o minimized signals from different clusters are
well-separated.

Eur. Phys. J. C 80, 886 (2020)
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Latent space distribution
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Object Condensation

Coward Loss

coward Z(l B’L

o apply to true cluster seeds only
o encourage cluster seeds to have high 8 ~ 1

Repulsive loss

Vhoise = $SB Z nz,Bz
s/n ratio
o apply to background / noise nodes only
o regularize backgrounds to stay 5 ~ 0

[

Latent space distribution
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Object Condensation

Total Loss function

L = aVagtr + b‘/;epul + cVeoward + @Vhoise

> Carefully tune hyperparameters a, b, ¢, d to balance different
loss terms.

Eur. Phys. J. C 80, 886 (2020)




Architecture : Encoding Waveform

o

Input Waveform

Input pedestal-subtracted waveform, di-
mension [1080 channels][110 samples]

waveform sample into higher di-
mension.

Long-Short Term Memory (LSTM) network
compresses WF into latent feature vectors.
Usual features in literature : peak time,
pulse integral, rise time, fall time,
FWHM, number of peaks, etc.

the background waveform

to reduce memory overhead.
> For each WF associated with a cluster,
keep 3 — 5 WFs associated with noise.
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Architecture : GravNet

i
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GravNet

NPS Geometry

GravNet Layer
o takes the NPS geometry
o project to

> coordinate in latent space
> feature space for each vertex

o build kNN graph — aggregate features
from neighbors scaled by Gravitational po-
tential !
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o used as Positional encoding in down-
stream attention layers

15/20



Architecture
—0
&=
Encoder

Projection l

Object Condensation

Attention Layers

o Input : learned geometry from GravNet +
latent WF features

o Assign attention scores — correlate differ-
ent channels

Object Condensation Head

o Compress into object representation

> latent space coordinate z € R?
> Cluster seedness score 5 € (0.0,1.0)

o Use Object Condensation loss to train the
model.
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Result

Total Loss function

L = aVagtr + b‘/repul + cVeoward + @Vioise

loss terms.

> Gradual decrease of Viepul, Vaoise, Veoward iN-
dicates
> points from different clusters are well-
separated
> separate real signals from noise
> recognize center of cluster

> Flat Vastr indicates inability to recognize points
from the same cluster !

> Carefully tune hyperparameters a, b, ¢, d to balance different
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Inference Procedure

Recall Model Outputs

o Latent space coordinate = € R?
o Cluster seedness score 5 € (0.0, 1.0)

Clustering procedure

o Choose hyperparameters Bthreshold7 dthreshold
e Select points with 8 > Binreshold as cluster seeds

o Assign cluster membership based on distance in latent
space d

o Reject and mark as noise if d > dihreshold-
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Inference Result NP
—
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v~ Able to recognize cluster seeds and background noise.
x Unable to pull points from the same cluster — data overwhelmed by singleton clusters.
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Summary and Outlook

E I

v" Developed ML-based cluster reconstruc-
tion for NPS.

v Successfully separated noise and identi-
fied cluster seeds.

v Data Status: Reconstructed VTP FPGA-

triggered cluster memberships are ready
for ML training.

N
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— Verification: Test on Geant4 simulated
clusters using high-level features.

— EIC SRO: Construct streaming readout
frames composed of 2 us windows.

— Model: Pivot to transfer learning by de-
coupling waveform encoding and clus-
tering steps.

QueffersonLab/nps-sro-ml

Thank you for your attention!
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https://github.com/JeffersonLab/nps-sro-ml

