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NPS Run Group 1a (Sept 2023 — May 2024)

* E12-13-010: Exclusive Deeply Virtual Compton and Neutral Pion
Cross-Section Measurements in Hall C

e E12-13-007: Measurement of Semi-Inclusive #z° Production as
Validation of Factorization

* E12-22-006: Deeply Virtual Compton Scattering off the neutron with
the Neutral Particle Spectrometer in Hall C

* E12-23-014: Measurements of the Ratio R = 9z/9r | p/d ratios, Pt
dependence, and azimuthal asymmetries in Semi-Inclusive

DIS #° production form proton and deuteron targets using the NPS in
Hall C
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Neutral Particle Spectrometer in Hall C - Overview

ARl %

e Neutral Particle Spectrometer replaces one of the Hall C focussing >
spectrometers in the experiments
o Angle reach between 5.5 and 60 degrees.
o HMS has been recommissioned for 12 GeV
e Small angle, precision cross-sections, LT separation, high luminosity
e 1080 PbWO4 blocks. v, '
e Radiation hard and temperature controlled frame. pa—

[E12-13-010and E12-13-007] Deflection Trigger: HMS, HMS+NPS

magnet o
Electron beam ’_ﬂ,,QJH
— (5= m o m e e
10cm LH2
target
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Physics Motivation:
Exclusive m°
Electroproduction

Hall A experiment E07-007 [1] measured exclusive m° electroproduction cross
sections at
Xz=0.36 and Q?=1.5, 1.75, 2.0 GeV?.
Achieved L/T separation of the differential cross section do/dt .
Longitudinal component dor,/dt was found to be small or consistent with
zero, but compatible with leading-twist chiral-even GPD models.
Theoretical models including transversity GPDs are also in agreement with
the data, particularly at higher Q2.
Supports theoretical predictions involving chirally enhanced helicity-flip pion
distribution amplitudes.
Provides strong motivation to pursue m° studies at higher Q% and W to further
explore transversity GPDs.

Figure: PhysRevLett.117.262001

Small dashed line: VGG (chiral even GPDs)
Solid and long dashed: alternative models

with both chiral even and odd GPDs
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https://doi.org/10.1103/PhysRevLett.117.262001

Hall C kinematic complements earlier experiments

Q? (GeV?)
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Data and Event selection

Event selection:

kinC_x60_4b processed for LH2 with pass2 updated replay (waveform processing not yet included).

« HMS & NPS preliminary cuts applied as a workflow check — these cuts are intentionally
conservative and will be tightened for final results.

EDTM TDC: edtm tdc < ©.1

Reaction vertex: -4 < z < +4 cm
Momentum acceptance: -15% < & < +15%
Track angles:

* -0.10 < 6 < +8.10 rad

* -0.04 < ¢ < +0.04 rad

Cerenkov: NPE > 1.5

Calorimeter: 6.70 < E/p < 1.20

Cluster energy: E cl > 0.8 Gev
Cluster position:

* 30 < X cl < +30 cm

* 36 <Y cl < +36 cm

Cluster time window: 150 - At < T cl < 150 + At

e Cluster merging kept optional at this stage (compare merged vs unmerged; future steps).
* For events with >2 clusters, we apply a best-pair selection (algorithmic selection of the yy pair

most consistent with r® invariant mass).
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Background Subtraction:

Accidental subtraction using Timing spectrum

e The timing spectrum is used to identify accidental 3 160‘:; ‘w"ﬁr 3““ o W s - R )
coincidences by examining regions outside the true = 158F- A R f:- ﬁli
coincidence peak. I A
«Sideband regions provide a data-driven estimate of 156’; R FLA A A
accidental counts. 154%:'_1-%":, g i -;-il'x
eThe accidental template is normalized to the expected yield o T ’*’ )
inside the coincidence window and subtracted event-by- 152} ; -Ej,}ﬁ -"B_F_.r'
event (or bin-by-bin). ' =g
150
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Background Subtraction:
Residual combinatorial background

(more info)

Events

eTiming-plane subtraction removes timing accidentals but

not all combinatorial background.

eRemaining background arises from true-in-time but wrong-
pair combinations (cluster splitting, pileup, multi-photon

topologies).

e[t sits under and around the 1° peak and must be modeled

to extract the signal yield.

eFor this analysis we use a simple polynomial as a pragmatic,

conservative model.
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Pi0 mass after removing all timing accidentals
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A smooth, non-peaking combinatorial background
remains beneath the n° peak even after timing-
accidental subtraction.
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Background Subtraction: Combinatorial background subtraction

@ 1600— ]
2 _
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[nps: :FitCombinatorial BGAndSubtract] run=4398 poly order=4 chi2=487.11 ndf=170@ chi2/ndf=2.39477
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Events

Background subtraction - Summary

2000

1800

1600

1400

1200

1000

800

600

400

200

=]

- l Analysis flow

- 1) All 2° candidates

:_ 2) Within coincidence window (11 & t2)

:— r 3) After timing (accidental} subtraction
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1. Timing selection: Define prompt coincidence
window.

2. Timing-accidental removal: Model via sidebands
and subtract.

3. Combinatorial removal: Use invariant-mass
sidebands.

4, Final signal: Obtain accidental-free, combinatorial-
free m° yields for cross-section extraction.

Run 4398 summary
Total entries: 3222394
Pass HMS: 1686278
Pass HYS + NPS selection: 36360

Coin raw (timing plane): 14550

Estimated accidentals (time method): 946.389 +- 10.2601
Comb. BG fit ¥2/ndf: 2.395

Pi® fit p (MeVv): 131.158 o (MeV): 5.264

Pi® signal counts (final): 9834.132

Avnish Singh (CUA)
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Run-by-Run Trends for x60_4b

Top-left — n°® peak position vs Current:
Centroid is stable across runs and currents;
observed range: 130.80 — 131.60 MeV/c?.

Top-right — nt® peak width (o) vs Current:
Peak width is stable: 0 = 5.0 —5.50 MeV for
all currents.
Bottom — x¥ndf vs Current:
Fit quality degrades at high currents, with

2

x5 ~ 1. ) ~
milF rising from = 1-2 (10-30 uA) to =3.5

above 30 uA; origin under investigation.

The stability of the peak position and width
indicates a good run period with no major issues.
The peak width is already below 5.5 MeV and is
expected to improve further with waveform-based

analysis and ¥ calibrated data.
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Run-by-Run Trends for x60_4b

(refer to slide 33 for rate def.)

Top-left — Coincidence window event rate vs
Current:

Coincidence-window event rate increases
roughly linearly with beam current.
Top-right — Signal-to-Coin events vs Current:
The %ignal fraction remains relatively
stable (0.6-0.8).

Bottom-left — 7® Current normalized rate vs

LCF Corrected Rate vs Beam Current

Signal/Coincidence Ratio vs Beam Current
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Current :

The ° current normalized rate is almost
current independent, as expected, with a
very small —ve slope.

Bottom-right — Normalized yield vs Current:
A non-linear decreasing trend is observed in
the normalized yield as a function of current.

Luminosity corrections appear to be the
main source of variation for the normalized
yield. (correction in progress)

More studies on the current dependance
under progress.
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Missing mass correction

Invariant mass and missing mass
correlation is corrected event-by-event
using the relation (report):

., [GeV]

=

M?

II’.'ﬂI"I"

r2
= M: — corrfac (mjn, — mo)

where the corrfac is given as:
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https://hallcweb.jlab.org/elogs/NPS-RG1a-Analysis/179
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Skim Weights — Analysis

 After the full m° v5 production step, we write a
compact Skim TTree that keeps just the
information needed for physics plots and cross-
section extraction, instead of dragging around
the entire raw-event structure.

O Skim includes:

o eventnum — original event identifier (for
debugging / cross-checks).

o mgg — invariant mass of the selected yy pair.

o Mx / MxCorr — (corrected) missing mass for the
event.

o pass_pi0 — Boolean flag indicating whether the
event lies in the m°® mass window (| Myy - p| <
nsig-o, currently nsig = 3).

o w_sig, w_phys, w_signal — the three main
analysis weights
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Mw: final vs w ohys VS wsignal
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final Mgg (hWMG_CC_evt_data)
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SIMC + Geant4 Framework for piO Production (HMS + NPS)

- developed by the NPS collaboration, with this integration by Avnish Singh

e SIMC (Simulation Hall C; standard for Hall C):

* Generates the primary scattering events using cross-sections and radiative corrections.
e Simulates HMS spectrometer acceptance and full HMS side kinematics.
* Provides the event generator for the hadron side, serving as input to Geant4.

* Geant4 (NPS Detector Simulation):
* Uses SIMC vertices and hadron momenta as primary particles.
e Simulates particle transport and energy deposition in the NPS calorimeter.

* Builds on prior work within the NPS collaboration:
https://indico.jlab.org/event/946/contributions/16514/attachments/12609/20085/20
250506 DVCS simulation Hao Huang.pdf

See slide 34 for differences between the two implementation.

Please feel free to reach out to me for more discussions on the same :D
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Extended Output and Diagnhostic Branches

Completed SIMC <> Geant4 integration (repo: HallC SIMC Geant); added detailed diagnostic branches to validate
showering, clustering, and reconstruction.

New branches (in addition to SIMC):

* evtNb: Event number

* edep: total energy deposited as registered by Geant

* phot{1,2} hit: primary photon hit flag; 0 or 1 for unregistered or registered hit, resp.
* phot{1,2} v{x,y,z}: generation vertex (SIMC)

* phot{1,2} hit_{x,y,z}: true Geant4 hit position on calorimeter face

* phot{1,2} clust_{x,y,z}: reconstructed cluster position (from the clustering algorithm)
* phot{1,2} Ecal: energy deposited by primary photon (true Geant value)

* phot{1,2} clustSize: cluster size associated with the respective primary photon

* nClusters: number of reconstructed clusters

* clust_E: ntuple of cluster energies

* clust_{X,Y}: ntuple of cluster positions

* clust_Size: ntuple of cluster sizes

Photl_Ecal (truth) vs clust_E (reco) differ because clustering algorithm uses total block energy without photon ID.
NOTE: phot{1,2} hit {x,y,z}: mapping to physical calorimeter face in progress; other branches validated.
Feedback welcome on additional branches and/or any discrepancies found in the code
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https://github.com/avnishphy/HallC_SIMC_Geant

HMS validation:

Data vs SIMC Kinematic
comparisons

* Data:

« 19 selection cuts applied
for comparison.

* Binning weights after
background subtraction not
yet applied.

* Simulation:

e SIMC cross-section weights
applied to histograms.

e Same kinematic cuts as
used for data.

e Target contamination visible in
the ytar distribution.

* Further kinematic tuning of the
SIMC-Geant4 setup in progress.
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NPS Response: Cluster Distributions (Simulation)

clust_Y:clust_X clust_Y:clust_X {phot1_hit==1 && phot2_hit==1}
hist hist
Entries 644066 Entries 439472
Mean x 0.04283 Mean x 0.0353
Mean y 0.006576 Mean y -0.07138
Std Dev x 17.38 Std Dev x 17.18
Std Dev y 20.87 Std Dev y 20.28
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Fig. cluster positions for all the photon hits on the NPS face

Fig. cluster positions for all the photon hits on the NPS face. where both the photons registered a hit on the NPS face.

clust_Y:clust_X {phot1_hit==1 && phot2_hit==1 && nClusters!=2}

hist |

Enies 34078 * Events are uniformly distributed over the NPS surface,
a0 ean 0.

Sid Dovx 1883 as expected.
20 Std Dev y 22.15

e photl _hit, phot2_hit, and cluster multiplicity are used
to study acceptance and reconstruction effects.

a0 * Events with two photon hits but fewer than two clusters
are mainly located near the NPS edges, indicating edge-
related inefficiencies.

-30 -20 -10 0 10
Fig. Cluster positions on the NPS face for events which both
photons registered hits in the calorimeter but fewer than two
clusters were reconstructed.
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NPS 7% Geometric Acceptance
(Uniform illumination case)

Event Selection Flow (Strict Cuts)

400000
E 300000 212,102 211,964
o N o Q ’ - 1
Selection Criteria & Acceptance S o000 e
eExactly two clusters: nClusters==2 S S
100000
.BOth phOtonS hlt NPS phOtl_hlt == 1 && phOtZ_hlt == 1. o Total nClusters==2 photl_hit==1 phot2_hit==1  Geom Cuts
Photon Detection Status
eGeometrical cuts on detector face (both clusters):
el 0Ose: ( X € [-32,32], y € [—38,38] ) 1 and 2 hit (both) 237,824
oStrict: ( x € [-28,28], yE [-34,34] )
Acceptance 1 or 2 hit (not both) 212,920
*Efloose} = 40.45%
‘e{strl'ct} = 2742% No hits 49,256
0 50000 100000 150000 200000

Event Count
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NPS geometeric acceptance heatmap
(Red=Lower Acceptance, Green=Higher Acceptance)

NPS ¥ Geometric Acceptance » = = - - w8
(Uniform illumination case) |

20.0% 23.2% 26.4% 29.6% 32.8%

loose]

z‘ +34 27.0% 30.4% 338% 30
The simulated pi0 geometric acceptance quantifies the fraction of = §-
events lost as a function of NPS geometry. 5
For the ideal case of a uniform photon distribution over the 5 s
calorimeter surface (shown), the acceptance behavior is
straightforward. " :

10

In data, periods with dead or inefficient blocks and possible radiation
damage can introduce non-uniform, geometry-dependent losses, 7 x cut et width (om) LEFTotght miGHT-toose1
leading to non-trivial acceptance effects.

Efficiency vs X Cut (varying Y cuts)
4p & vw=38am Dead/OFF blocks from run 3614 to 3614

In progress: . e

=& Y £34cm
=& Y £32cm

* Apply energy and position 5 o viom
smearing to the simulated

photons to reproduce the detector HEEEHESSEEEEES

resolution observed in data. | B : .
* Use the smeared simulation to . - . EEEEE R

obtain a more realistic estimate of ~ EEEEEEEE EREEEEAR

the NPS geometric acceptance. 10
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Conclusion

Preliminary data quality check: Initial event selection and detector calibrations are stable; photon/electron
reconstruction performance is consistent with expectations.

Pipeline readiness: Analysis framework now handles multi-run datasets, per-run corrections, and outputs
structured ntuples for physics observables.

MC integration validated: SIMC+Geant4 workflow reproduces basic kinematic distributions; smearing procedures
provide realistic resolutions for comparisons.

Next Steps

Finalize binned datasets: Complete binning in Q?, 6, ¢, —t for exclusive and SIDIS observables; produce
intermediate physics distributions.

Efficiency & normalization refinements: Fine-tune all efficiency and normalization corrections, and propagate
uncertainties to the final yields.

MC-data tuning: Optimize SIMC+Geant4 smearing parameters; include additional detector effects to better
reproduce data.

Cross-checks & validation: Compare results with collaborators’ simulations and historic datasets to ensure
consistency.

Preliminary physics results: Generate preliminary cross-section estimates with propagated uncertainties.

Thanks for your time and attention! :D
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Physics Motivation: Exclusive nt® Electroproduction

Measurements of exclusive m° electroproduction in the valence region have been
performed by Hall A [1] and the CLAS Collaboration [3,4].

Hall A results suggest dominant contributions from transversely polarized virtual
photons (o7).

Significant LT and TT interference terms were also observed, highlighting the
complex structure of the reaction mechanism.

Measuring longitudinal-transverse (L/T) separated cross sections offers a clean
probe of transversity effects in pion electroproduction.

L/T-separated m° predictions above the resonance region remain uncertain, with
limited experimental data available.

If a large o is confirmed at higher Q%> and W, it could open the door to a detailed
study of transversity GPDs—an essential but elusive piece of the nucleon
structure puzzle.

Meanwhile, the longitudinal cross section g, if isolated, could provide a unique
channel to access the usual chiral-even GPDs via neutral pion production.

PhysRevLett.117.262001
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https://doi.org/10.1103/PhysRevLett.117.262001
https://doi.org/10.1103/PhysRevLett.117.262001

E12-13-010: Exclusive Deeply Virtual Compton and Neutral Pion Cross-Section
Measurements in Hall C

Complement the kinematic settings of Hall A, by one or two conjugate setting. Increases the

Q? reach to even higher values at fixed xg. Expands the kinematic coverage to smaller values
of Xg.

e 119 electroproduction complements other channels for studying the nucleon structure: _.
o No diffractive p contributions: Cleaner signal, reducing complications from | Y )
vector mesons.
o No exclusive pole contributions: Focuses the analysis purely on the production
mechanisms without interference.
o Reduced resonance contributions: Resonances play a smaller role, allowing
access to more fundamental processes.

e Motivation for n€ electroproduction towards GPDs:
o Sensitive to transversity GPDs (H, E7), which are less accessible in vector
meson production. - PhysRevLett.117.262001
o Offers insights into parton helicity flipping (chiral-odd GPDs).
o No need for polarized targets or beams to access these polarized distributions.
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The three weights in the Skim

The three weights in the Skim
0 w_sig — Template-A (combinatorial) signal weight
o Built from the A-method category mixing (V/H/AD/AP) using the all-pairs template.
o Encodes, for each event, the factor that turns the raw CC category counts into an estimate of the “true” CC ni®
contribution after accidental / category subtraction.
o Use case: sanity checks of the A-method itself, or comparisons to older v5-style analyses.
O w_phys — “physics” weight (dummy + Option-A corrected)
o For each Myy bin j, the production step builds the final dummy+Option-A—subtracted spectrum:
o Use case: this is the “physics-corrected” weight that reproduces the final dummy+Option-A—subtracted Myy
spectrum and is appropriate for unselected charge-normalized yields.
O w_signal — S+B—cleaned signal-only weight
From the S+B fit to the final Myy spectrum Fitted signal yield SjS_jS;j
o Fitted background yield BjB_jBj
Signal fraction (purity) fS(j)=Sj/(Sj+Bj)f_S(j) =S_j / (S_j + B_j)fS(j)=Sj/(Sj+Bj)
w_signal keeps all the earlier corrections (dummy, A-method, charge, etc.),
and additionally projects out only the n® signal component according to the S+B fit model.
Use case: any distribution (Mx, kinematics, etc.) where you want signal-only yields from the fit, with the irreducible
under-peak background statistically removed.
Will be used for final normalized yields in analysis.

O O O O
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NPS clusters per event
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Step 1: Excluding Out-of-Window events
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Step 2: Subtracting timing accidentals via sidebands
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Diagonal sideband raw sum = 1370 total area =
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Step 2: Removal of the contribution to the coincidence window from (timing) accidental events estimated using the

sidebands.

h _template = diag sum * 1.0 + 0.5*(hor_sum + ver _sum) - 0.5*(fulll + full2)

m,, diag 0 m,, hor 0

Counts
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Modeling Timing Accidentals in the coincidence window

1. Timing accidentals within the coincidence window are modeled
using data from the out-of-coincidence window.

2.  The modelis scaled so that its integral reproduces the estimated
accidental counts in the coincidence window.

Final estimated accidental counts in coin box = 946.389
3. This approach ensures a data-driven estimate of accidental
contributions without biasing the signal.
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Rate definitions

(Ref. thesis Salina F. Ali)

Raw Rate (H>) Raw Counts
aw Rate (Hz) = ——
Step time (s)

Raw Counts

LCF Corrected Rate (Hz) = k
Step time (5) x LCF

;.LA) _ LCF Corrected Rate(H z)

Current Normalized rate ( B T(A)

(Ali 2018). The background containing all events (true coincidences, accidentals and random

coincidences) scales with the beam current squared (/%) and can be written as

Background (ns) = b x I? (3.50)

where b is a constant. The signal or real coincidences scale directly with the beam current shown
in

Signal (ns) =a x I (3.51)

where a is a constant. The relationship between the signal, background and current [ can be

expressed by a ratio of signal to background:

Signal axI a
= = 3.52
Background bxI1* bxlI (3-52)

Simplifying this signal to background ratio further to apply to the coincidence time distribution,

we can write
Signal Background — Accidental peak

Background (3.53)

Background
where the accidental peak is shown in Fig. 3.19. The beam current dependence for the signal and
accidentals is expressed by Eq. 3.52. The scaled DVCS current normalized rate was calculated by

applying Eqg. 3.53, and can be expressed by

,U,/L) _ Raw Rate (Hz) X Signal to Background ratio (3.54)

Scaled Current Normalized rate
H:z I(pA) x LCF
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Differences from the DVCS group implementation

¢ DVCS framework: three components (standalone event generator + HMS MC + Geant4

for NPS); (git link)(presentation)
e This work: two-component unified pipeline — SIMC handles event generation, cross

sections, radiative effects, and HMS, while Geant4 is dedicated to the full NPS detector

simulation.(git link)
eThe branch structure is also slightly different between the two implementations; effort

is being made to make the branch structure close to the replay data files in the

SIMC+Geant4 implementation.
eThis integration uses the well tested SIMC for HallC for the workflow and ensures

consistent physics modeling between HMS and NPS.



https://github.com/hhuang-hep/NPS2023_Simulation
https://indico.jlab.org/event/946/contributions/16514/attachments/12609/20085/20250506_DVCS_simulation_Hao_Huang.pdf
https://github.com/avnishphy/HallC_SIMC_Geant

Prelim shape of Mgg background

- P. Bosted (elog)

eUsed large SIDIS samples from the PEPSI (Lund) generator at
10.6 GeV on p and d targets to study the yy invariant-mass
spectrum for NPS acceptance (3.5 m, Ey > 0.6 GeV).
*Observed a clear ° peak at 135 MeV with a background
mainly from photons originating from two different m°s in the
same event.

eBackground shape becomes less dependent on m°® energy as
the m° energy increases.

*Signal-to-background ratio improves rapidly with increasing
r° energy (note log scale).

*No NPS energy resolution applied, so the true signal-to-
background will be worse, especially at low 1° energies.

e Despite this, the background shape is expected to be similar
and can be used as a first approximation for modeling under
the m° mass peak.
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