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The EMC Effect

Aubert et al., PLB (1983)
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The EMC Effect

Schmookler et al., Nature (2019)
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EMC Theories
- N [ N ([ p

* All nucleons modified * Virtuality-dependent
* Fermi-motion
equally modification
* Binding effects
* Larger bound proton * SRCs are highly
* Meson exchange
K / k radius / k virtual /
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EMC Theories

Traditional Nuclear Effects Mean-field Modification SRC Modification

4 N N

* All nucleons modified * Virtuality-dependent
equally modification
* Larger bound proton * SRCs are highly

radius virtual
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EMC Theories

Traditional Nuclear Effects

Mean-field Modification

4 N

* All nucleons modified

equally
* Larger bound proton

radius

N\

SRC Modification

-~

* Virtuality-dependent

~

modification
* SRCs are highly

virtual




Short Range Correlations

* High Momentum States
e ~20% of nucleons

Log Momentum Dist.

Nucleon Momentum



Short Range Correlations

e Back-to-back momenta
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Patsyuk and Kahlbow et al., Nature Physics (2021)



Short Range Correlations

* Mostly np pairs £ 100f gp fraction I — -
-g - C Al Fe Pb
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Short Range Correlations
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SRC Modification is well supported

Schmookler et al., Nature (2019) Weinstein et al., PRL (2011)
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(Most) experiments measure

EMC Effect (inclusive DIS) SRC’s (quasi-elastic)




Spectator Tagged DIS

Detect spectator nucleon
Provides information on

initial nucleon state

(e,e’p,)
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Spectator Tagged DIS

@ pspectator

Detect spectator nucleon
Deuteron: Fully constrains

initial nucleons

~y

.
Pmiss ~
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Spectator Tagged DIS

o
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Large Acceptance Detector (LAD) Experiment

* Dfe,e’py)
* HMS/SHMS for electron
* Install two new detectors
* Scintillating bars
* GEMs




Backward angles minimize FSI

x10° x10°

110°-70°

# counts
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A. V. Klimenko et al., PRC (2006)



LAD: Scintillator Bars

e Refurbished from CLAS-6 ToF

* 5 Panels
* 2double, 1 single plane
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: GEMSs

LAD

* Two layers

* Ai

In vertexing

* Reused from PRAD
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Experimental Run Conditions

* Jefferson Lab E12-11-107 (LAD)

- 34 PAC Days {Feb20625—May-20625)
(Mar 2025 — Jul 2025)

* Beam Energy: 11 GeV
* Current: ~+A 0.3 A
* Target: 20 cm liquid D2

* Luminosity: 1.2x10% cm™s
per nucleon

N el W
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Observables

F, (X,: ta O‘s)bound . an ( s, X,)bound > an ( (s, X()' )free
F5(%, Q%) free F'(as, Xp)pound — F2'( 0, X ) free

Y a’ (Tagged DIS data) (Simulation)

xol ~ 0.3

X Rpgj
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Projected Sensitivity
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Hauenstein et al., EPJA (2024)
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Calibrations and Initial Results

* Optics * Clustering * Timing
* Individual * Position * Energy
detectors * Tracking * Proton PID

* SHMS + HMS
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Calibrations and Initial Results

* Optics * Clustering * Timing
* Individual * Position * Energy
detectors * Tracking * Proton PID

* SHMS + HMS
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LAD S HM S Optl CS StatU.S — A 11 extended target matrix

LAD optimized matrix

xsieve (cm)
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Aln extended target matrix
LAD optimized matrix

LAD SHMS Optics Status

ysieve (cm)

800{—
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LAD SHMS Optics Status

Aln extended target matrix
LAD optimized matrix

Target z-position

2000

1800

1600 « Target z-position is
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Calibrations and Initial Results

Spectrometers

* Optics * Clustering

* Individual * Position
detectors - Tracking

* SHMS + HMS

* Timing

* Energy
 Proton PID
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Aligning the detectors

* Assume the track must go through one of the foils,
* Fitthe track trough the two GEM hits and the hodoscope bars
* Minimize the average y?*

X position of the lad
o— T l bar (assuming the
Target resolution is
10cm)

position of the two hits
on the GEMs
(assuming the
resolution is 0.1mm)
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After 1stalignment

Vertex Z

20 _ h_vertex_gem
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 Allthree foils
can be resolved

 Clear electron-
GEM correlation

31




After 15t alignment

Vertex Z
Std Dev 8.303 _
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After 1stalignment

N

Diff y (cm)
.

GEM 1 diff from track vs position along plane

h_gem_diff y gem1

Entries 4229
Mean x -1.921
Mean y 0.02306
Std Dev x 10.71
Std Dev y 0.223

-30

-20

20 30
local y (cm)
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After 1stalignment

Diff y (cm)
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Hodo Plane 2 diff from track vs y pos on bar
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Able to diaghose a 10% shift in hodoscope

propagation velocity!!

(Currently being corrected)
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Calibrations and Initial Results

” N\
* Optics * Clustering * Timing
* Individual * Position * Energy

detectors * Tracking * Proton PID
e SHMS + HMS




PMT Oddities

* Negative integral,
positive amplitude

ADC Value (mV)

40 Paddle 9 (Bottom)
35

ADC Amp: 37.3 mV  ADC Int: =31.9
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10
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0 20 40 60 80 100 120
Sample Number
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PMT Oddities

* Negative integral,
positive amplitude

 Shaped baseline

* Diagnosing
magnitude of
problem

* Implementing fix

ADC Value

Paddle 7 - Before/After Correction

—II‘IIII‘IIII‘IIII‘IIII‘IIII‘II

— Qriginal
— Corrected

Sample Number
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Time (ns)

Hodoscopes: Bar-to-bar timing w/ laser

* Know: hit position (center) and time from laser

Uncorrected Times for Top Plane 0 r-\ Corrected Times for Top Plane 0

GoodTepTdeTimeCen_20_planed
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120 = Entries 196031 |y 2 120 B Entries 196031 0
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— - —— Mean y -142.2 01 £ - Mean y -156.5 [0
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a0l - F- 140 1401 120
) 1201 - 100
-150(— - - 100! -150—
800
— 600
B j— 400
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0 2 4 6 8 10 0 2 4 6 8 10
Bar Number Bar Number

*~ns width is due to
uncorrected trigger jitter
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Counts

Counts

Counts

Cross-check: Back — Front Hodoscope times
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Counts

ADC-TDC hit matching disrupted by after-pulses
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ADC-TDC hit matching disrupted by after-pulses
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Absolute timing
(Photon Flash)

ToF Plane 001 Bar 9 All_Hits

h_ToF_plane_001_b...
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