Hall B - Run Group K Color Confinement and Strong QCD Status Update

E12-16-010 A Search for Hybrid Baryons in Hall B with CLAS12
Annalisa D'Angelo

E12-16-010A Nucleon Resonance Structure Studies Via Exclusive KY

Electroproduction at 6.6 GeV and 8.8 GeV

Daniel Carman

E12-16-010B Deeply Virtual Compton Scattering with CLAS12 at 6.6 GeV

and 8.8 GeV

Latifa Elouadrhiri

E12-16-010C Separation of the σ_1 and σ_T contributions to the production

of hadrons in electroproduction

Tim Hayward, Harut Avakian

Approved:

Jefferson Lab

50 PAC days at 8.8 GeV 50 PAC days at 6.6 GeV

Assigned Fall 2018:

5.5 PAC days at 7.5 GeV 4.0 PAC days at 6.5 GeV

This series of experiments focuses on understanding quark-gluon confinement through exploration of the structure of the ground and excited states of the nucleon

E12-16-010 E12-16-010A E12-16-010B E12-16-010C

RUN GROUP K

Assigned Spring 2024:

2 PAC days commissioning at 6.5 GeV 16.5 PAC days at 6.4 GeV 13.5 PAC day at 8.5 GeV

Gran Total: 42 PAC days of collected data + 30 PAC days of assigned data → 72 PAC days globally assigned

CLAS Collaboration Meeting - Run Group K Status Update - November 18th 2025

Main Questions to Address

- The N* spectrum: what is the role of glue?
 - Search for new baryon states E12-16-010
- How does meson-baryon cloud emerge?
 - Measure the Q² dependence of electrocoupling amplitudes E12-16-010A
- How is color confinement realized in the force and pressure distributions resulting in stable nucleons?
 - Study GPDs and their moments from DVCS E12-16-010B
- What is the 3D internal structure of the nucleon?
 - Study the nucleon structure function from SIDIS E12-16-010C

Run Group Proposal (RG K)

"Color Confinement and Strong QCD"

Hybrid Baryons E12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV 2 < Q 2 < 2.0 GeV 2 in mass range from 1.8 to 3 GeV in KΛ, N $\pi\pi$, N π (A. D'Angelo, V. Burkert, D.S. Carman, V. Mokeev, R. Gothe)
KY Electroproduction E12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q² evolution of electrocoupling amplitudes (D.S. Carman, V. Mokeev, R. Gothe)
DVCS E12-16-010B	Access GPDs H, E, \widetilde{H} , \widetilde{E} using DVCS process ep \to ep γ and the DVMP process ep \to ep π^0 (L.Elouadrhiri, F.X. Girod)
SIDIS E12-16-010C	Measure the proton structure functions in the deep-inelastic scattering by Rosenbluth separation performed combining RG-K and RG-A data on semi-inclusive electro-production of hadrons. (T. Hayward, Harut Avakian)

100 days		
approved by PAC 44 and		
confirmed by PAC 48 (Jeopardy)		
$E_b = 6.6 \text{GeV}$, 50 days -3passes		
$E_b = 8.8 \text{ GeV}$, 50 days – 4 passes		

RUN CONDITIONS			
Torus Current	100% (3375 A) - negative out-bending		
Solenoid	-100 %		
FT	ON @ 7.5 GeV -> OFF @ 6.5 GeV and 8.5 GeV		
Beam/Target	Polarized electrons, un-polarized LH ₂ target		
Luminosity	• $^{\sim}$ 5 10 34 cm ⁻² s ⁻¹ @ 7.5 GeV $^{\sim}$ 0.87 10 34 cm ⁻² s ⁻¹ @ 6.5 GeV 0.87 10 35 cm ⁻² s ⁻¹ @ 6.4 GeV 10 35 cm ⁻² s ⁻¹ @8.5 GeV FULL LUMINOSITY		

CLAS12

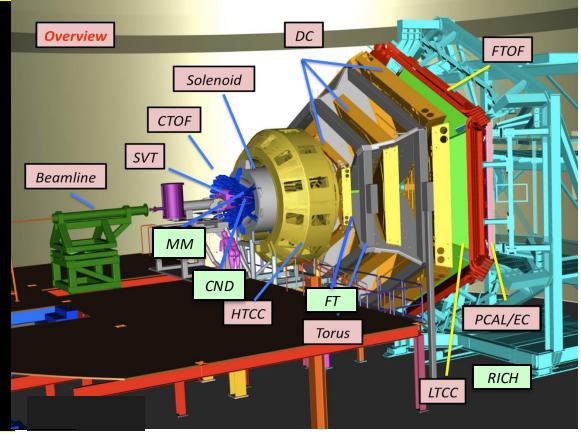
Equipment

Hall B

Forward Detector (FD)

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward TOF System
- Pre-shower calorimeter
- E.M. calorimeter

Central Detector (CD)

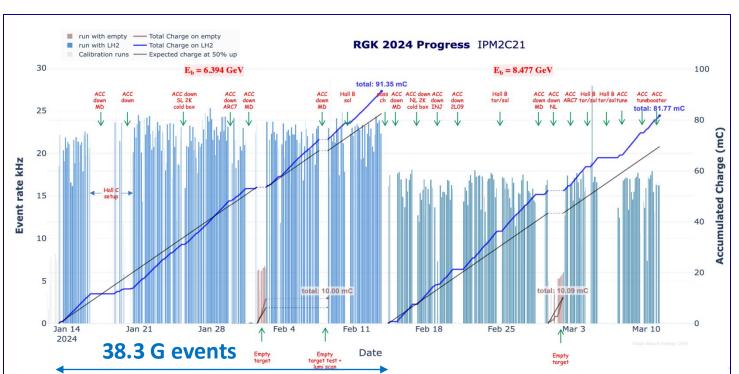

- SOLENOID magnet
- Silicon Vertex Tracker
- Central Time-of-Flight

Beamline

- Cryo Target
- Moller polarimeter
- Shielding
- Photon Tagger

Upgrade to the baseline

- Central Neutron Detector
- MicroMegas
- Forward Tagger
- RICH detector
- Polarized target



Run Group K - SPRING 2024 Data Taking Overview

December 15-19, 2023 – 4 calendar days

Commissioning

January 11 - March 11, 2024 – 60 calendar days

Alignment and Production

3-passes

 $E_e = 6.39463 \text{ GeV}$ $I_e = 65 \text{ nA}$ $Lum. = 0.87 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Run Range:

19200 – 19659 **259** Production Runs

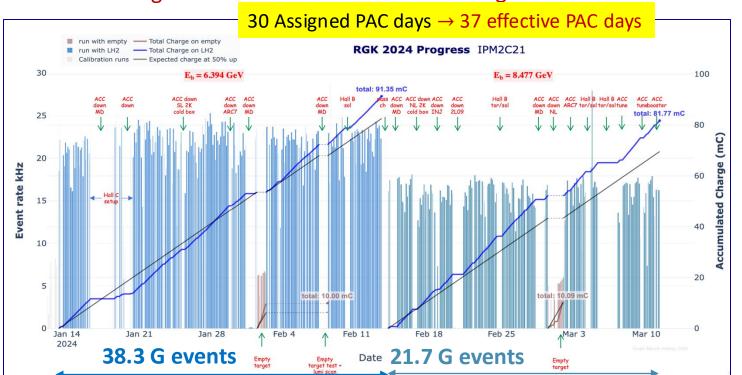
38.3 G prod events

10 Empty tgt runs @ 200 nA **0.41 G ET events** (~1% full)

Accumulated

Charge:

Full tgt = 91 mC Empty tgt = 10 mC Total = 101 mC



Run Group K - SPRING 2024 Data Taking Overview

December 15-19, 2023 – 4 calendar days

January 11 - March 11, 2024 – 60 calendar days

Commissioning Alignment and Production

4-passes

 $E_e = 8.47757 \text{ GeV}$ $I_e = 75 \text{ nA}$ $Lum. = 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

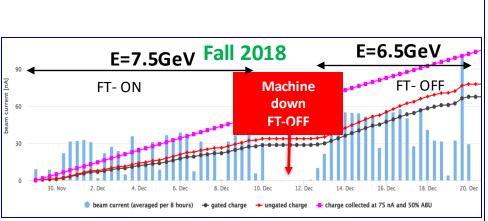
Run Range:

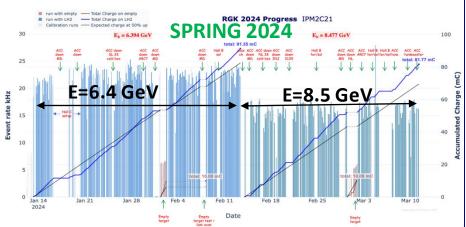
19660 – 19893

174 Production Runs

21.7 G events

8 Empty tgt runs @ 200 nA **0.32 G ET events** (~1.4% full)


Accumulated


Charge:

Full tgt = 81.77 mC Empty tgt = 10 mC Total = 91.77 mC

Run Group K Production

45mC of accumulated charge

Fall 2018				
Beam Energy	Beam Current	Collected Events		
7.5 GeV	35 nA	3.5 G		
7.5 GeV	45 nA	4.3 G		
6.5 GeV	60 nA	7.8 G		

EVENTS 15.6 G

193mC of accumulated charge

Spring 2024				
Beam Energy	Beam Current	Collected Events		
6.4 GeV	65 nA	38.3 G		
8.5 GeV	75 nA	21.7 G		

Statistics increased by a factor 4

EVENTS

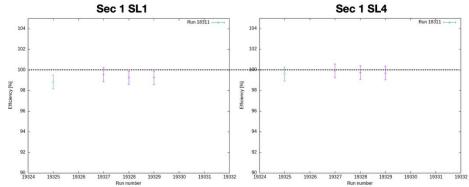
60 G

Run Group K - Commissioning and Calibration Runs

December 15-19, 2023

- Trigger Studies Valery Kubarosky
- Luminosity Scans
- DC HV scans Florian Hauenstein
- Reversed solenoid polarization runs

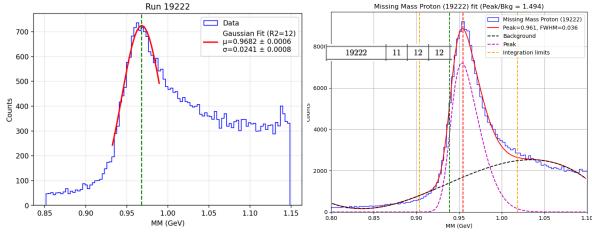
January 11-13, 2024


- Warm/cold empty target alignment studies: zero magnetic fields Raffaella De Vita
- DC studies
- Empty target runs
- Luminosity scans

Service studies useful for all Run Groups

R1 DC HV setting	R2 DC HV setting	R3 DC HV setting	Current
KI DC II v setting	KZ BC IIV setting	No De IIV setting	Current
10	11	11	40 nA
11	12	12	40 nA
9	10	10	40 nA
10	10	10	40 nA
10	10	11	40 nA
10	10	11	40 nA
10	12	11	40 nA
10	11	10	40 nA
10	11	12	40 nA
12	13	13	40 nA
11	11	11	40 nA
10	12	10	40 nA

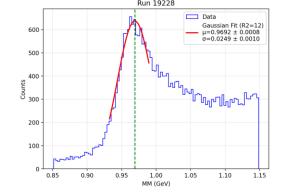
- HV 11,12,12
 - Threshold 30,45,45 (run 19327)
 - Threshold 45,60,60 (run 19328)
 - Threshold 60,60,60 (run 19329)
- Comparison RGD with threshold 30,45,45


· No decrease in efficiency for higher thresholds

(11, 12, 12) – SPRING 2024 – 3-passes configuration (10, 12, 11) – SPRING 2024 – 4-passes configuration (9, 10, 10) – FALL 2018 configuration

By Florian Hauenstein

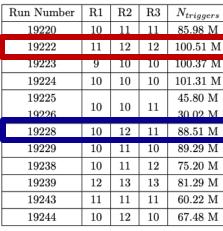
Run Number	R1	R2	R3	$N_{triggers}$
19220	10	11	11	85.98 M
19222	11	12	12	$100.51 \; { m M}$
19223	9	10	10	100.37 M
19224	10	10	10	101.31 M
19225	10	10	11	45.80 M
19226	10	10	11	$30.02~\mathrm{M}$
19228	10	12	11	88.51 M
19229	10	11	10	89.29 M
19238	10	11	12	75.20 M
19239	12	13	13	81.29 M
19243	11	11	11	60.22 M
19244	10	12	10	67.48 M


(11, 12, 12) – SPRING 2024 – 3-passes configuration

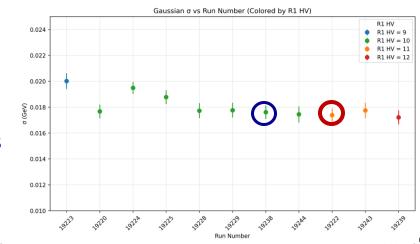
$$ep \rightarrow ep\pi^+\pi^-$$

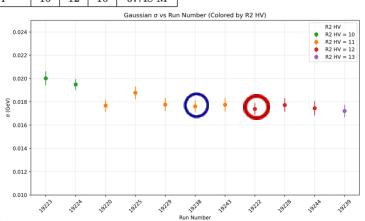
By Krishna Neupane

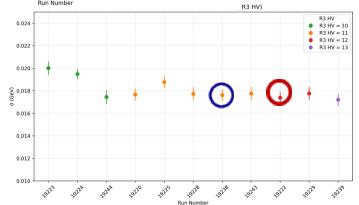
(10, 12, 11) – SPRING 2024 – 4-passes configuration



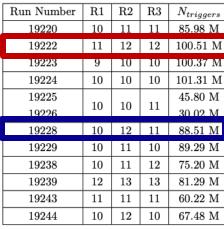
Proton missing mass

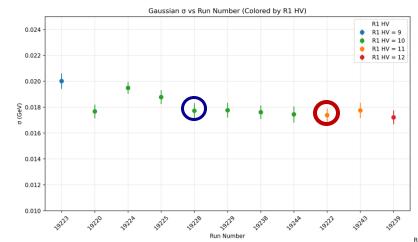


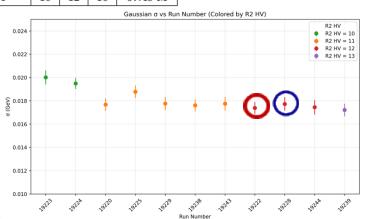

3 passes

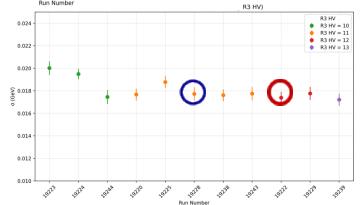

4 passes

By Krishna Neupane


DC HV has been optimized

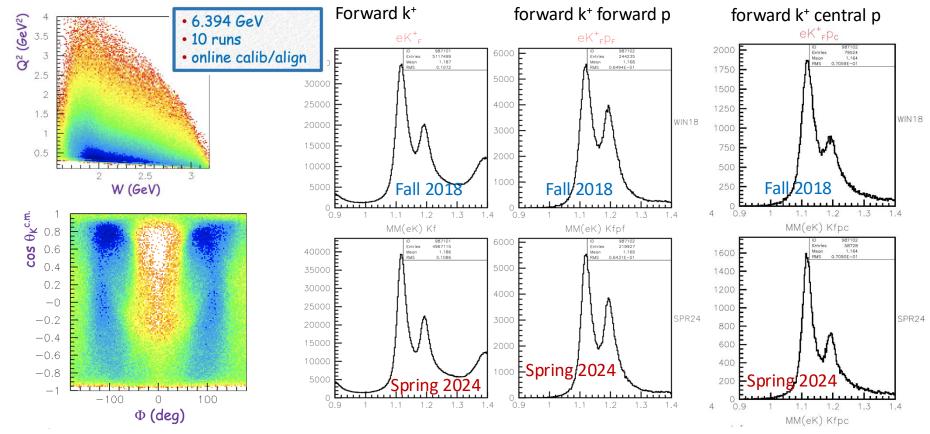


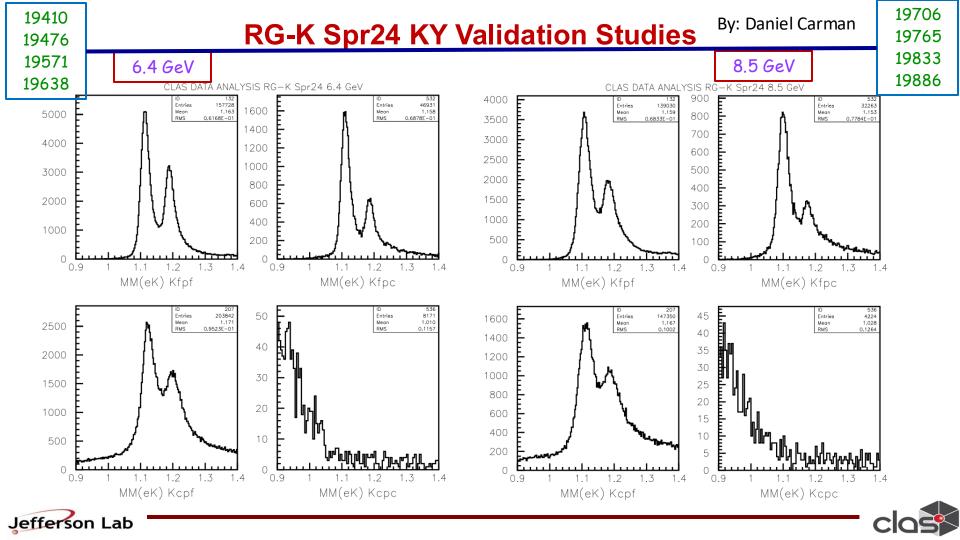

3 passes


4 passes

By Krishna Neupane

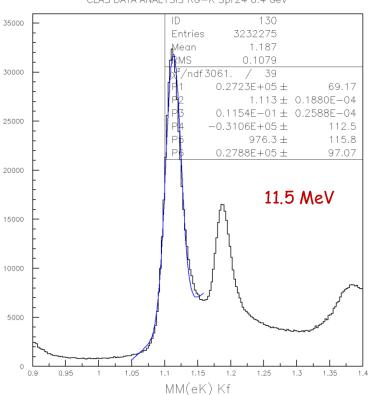
DC HV has been optimized



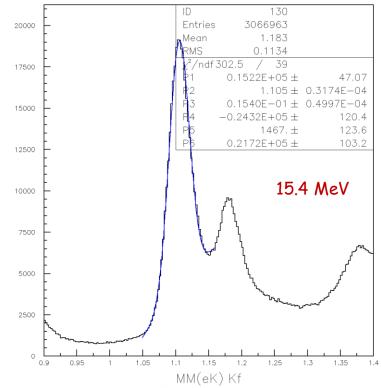


RG-K Production – KY Data analysis

class


By: Daniel Carman

RG-K Spr24 KY Validation Studies


6.4 GeV

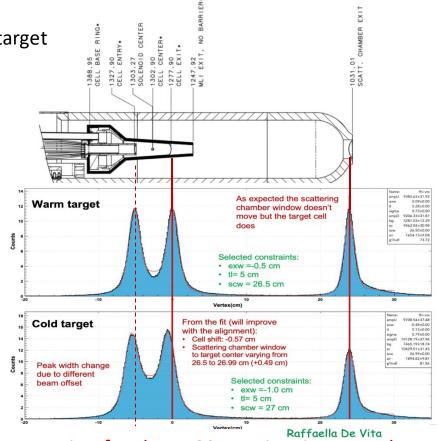
CLAS DATA ANALYSIS RG-K Spr24 6.4 GeV

8.5 GeV

CLAS DATA ANALYSIS RG-K Spr24 8.5 GeV

Warm/Cold empty target Alignment

Standard procedure: DC alignment done with empty target (cold) with torus & solenoid @ zero field


• Target "foils": cryo-target entrance + exit windows, scattering chamber exit window

At start of RG-K run, 1 full day was dedicated to alignment runs:

- 12 hr with empty/warm target (first time)
- 12 hr with empty/cold target

Alignments have not taken **thermal contraction of cryo-target system** into account

- FEA computed upstream shift of cell by 5 mm
- Data agree with engineering calculation and survey

Spring 2024 data have been fully calibrated - in preparation for the PASS1 Review in December

Run Group K On-going analyses

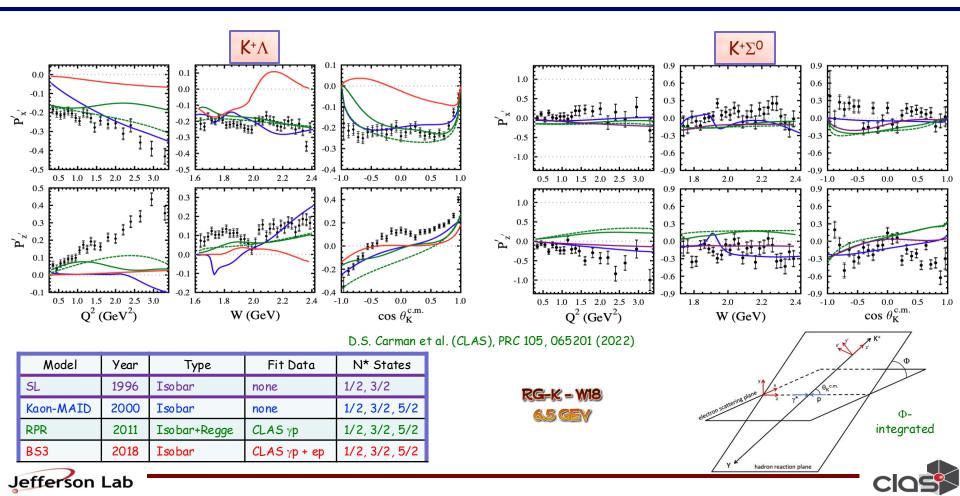
Student/Scientist	Topic
Chiara Ammendola - Roma	$ep \to e'K^+Y$ [$\Lambda(1116), \Sigma(1193), \Lambda(1520)$]
Joshua Artem Tan - JLAB/ Sangbaek Lee	DVCS Beam Spin Asymmetry
Yijie Wang - MIT	DVCS Cross Section and Elastic Scattering xsec
Story Frantzen - MIT	DV π^0 p
Anastasya Pavlova – MSU	$ep o e'\pi^0 p$
Stepan Savkin – MSU	$ep \rightarrow e'\pi^+\pi^-p$
Bianca Gualtieri - FIU	$ep \rightarrow e'K^+K^+\Xi^-$
Tatsuhiro Ishige	$ep \rightarrow e'K^+ \Lambda(1405)$
Dan Carman/Lucilla Lanza	$ep \rightarrow e'K^+Y$ [$\Lambda(1116), \Sigma(1193)$]
Krishna Neupane	$DV K^+K^-p$
Veronique Ziegler	$ep \rightarrow e'K^+\Lambda \rightarrow e'K^+p \pi^-$
Harut Avagyan	SIDIS

Talk on Friday

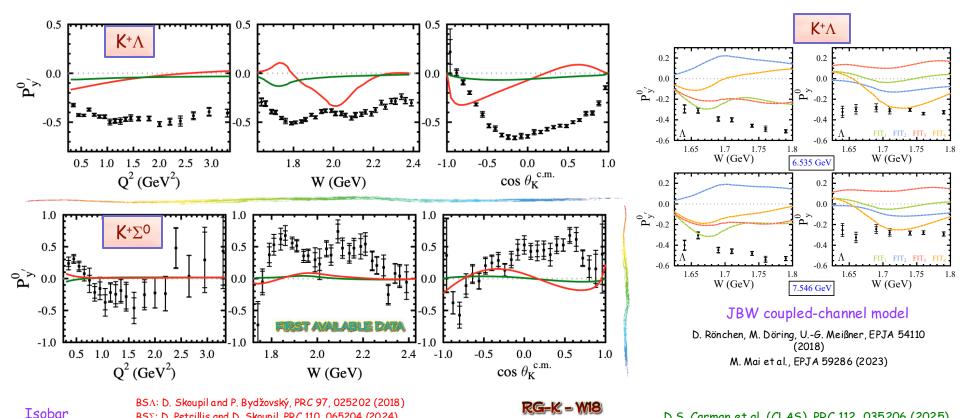
Most analyses profit from the availability of data at 3, 4 and 5 passes combining RGK and RGA data Jefferson Lab

Run Group K Trains

Skim Number	Wagon
1	elastic channel
2	sidis
3	Lambda Wagon
4	Jpsi TCS Wagon
7	K+ K- p (φ)
13	missing neutron


Skim Number	Wagon
16	DVCS
18	DV pi0 p
20	DV pi+ pi- pi0 p
21	e K+ (e in the FD)
29	two pions (with missing mass cuts)
30	two pions (by Neupane)

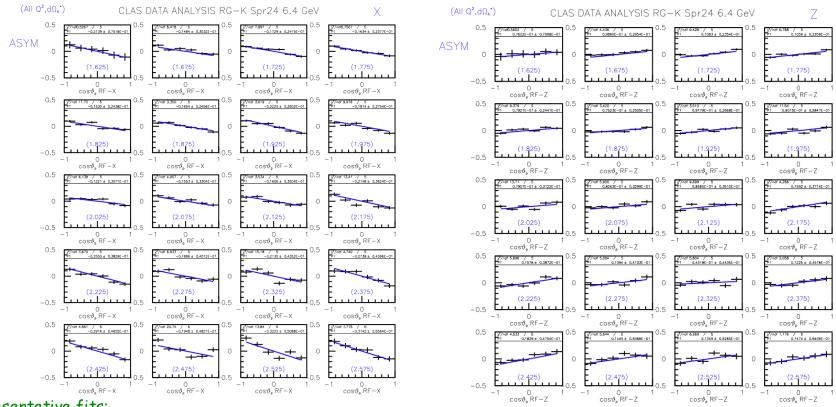
will be implemented shortly


CLAS12 KY Transferred Polarization

By Dan Carman

CLAS12 KY Recoil Polarization

By Dan Carman


BSS: D. Petrillis and D. Skoupil, PRC 110, 065204 (2024)

SL: J.C. David, C. Fayard, G.H. Lamont, and B. Saghai, PRC 53, 2613 (1996)

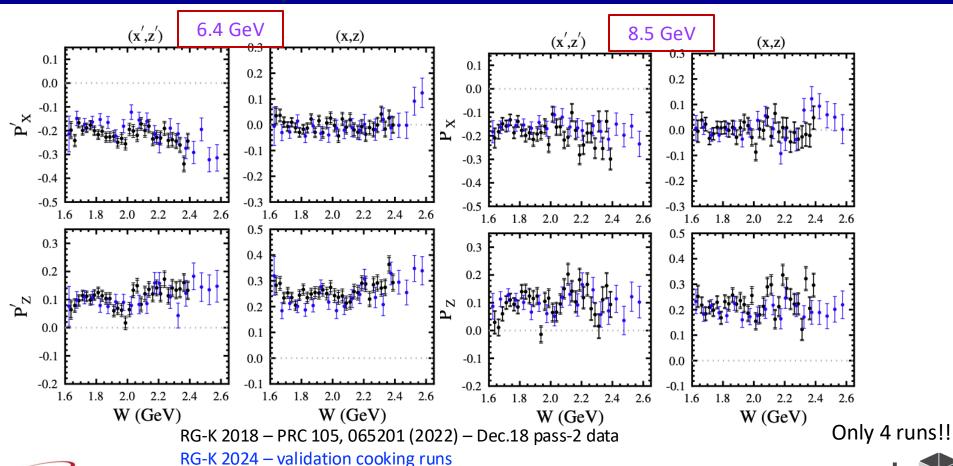
D.S. Carman et al. (CLAS), PRC 112, 035206 (2025)

models:

Only 4 runs!!

Representative fits:

z' along K+,

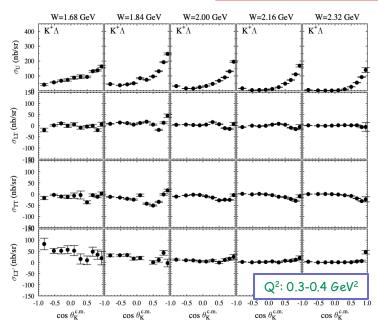

x' in hadronic plane perp to K⁺

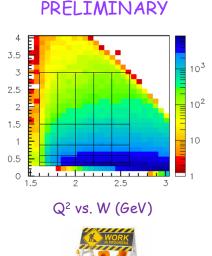
Helicity asymmetry fits : $A = \alpha P_b P' \cos \theta_p^{RF}$

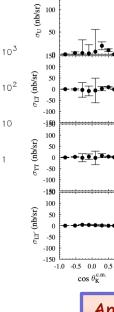
 $P_b = 84.92\%$

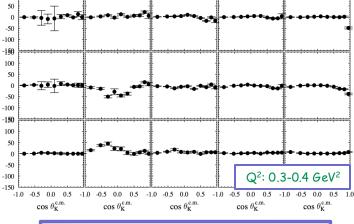
By Dan Carman

 $ep \rightarrow e'K^{+}\Lambda$


$$\frac{d\sigma}{d\Omega_K^{c.m.}} = \sigma_T + \epsilon \sigma_L + \sqrt{\epsilon(1+\epsilon)}\sigma_{LT}\cos\Phi + \epsilon \sigma_{TT}\cos2\Phi + h\sqrt{\epsilon(1-\epsilon)}\sigma_{LT'}\sin\Phi$$


 $ep \rightarrow e'K^{+}\Sigma^{0}$


W=2.16 GeV


 $\mathbf{K}^{+}\Sigma^{0}$

 $K^{+}\Sigma^{0}$

W=2.00 GeV

 $\mathbf{K}^{+}\Sigma^{0}$

 $\sigma_{T,L,LT,TT} = f(Q^2,W,\cos\theta_K^*)$

rg-k - wis

JLab, JMU, Rome

65 CEV

Analysis of Spr24 RG-K dataset upcoming with 10x the statistics

Summary

- Analysis of the RG-K W18 datasets has still proven very valuable:
 - D.S. Carman et al. (CLAS Collaboration), "Beam-Recoil Transferred Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12", Phys. Rev. C 105, 065201 (2022)
 - * D.S. Carman et al. (CLAS Collaboration), "Recoil Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12", Phys. Rev. C 112, 035206 (2025)
- Attention is now turning to the Spr24 dataset (100 mC @ 6.4 GeV, 100 mC @ 8.4 GeV)
 - New dataset requires improved techniques/tools to extract observables with minimized systematics:
 - New EG including radiation (EXCLURAD) + hyperon polarization
 - Improvements to forward tracking (algorithms+HV settings)
 - New corrections to minimize systematics from detached vertex
 - Improvements to central tracking algorithm (AI/ML methods)
 - Much improved statistics compared to CLAS, first RG-K run
- Analysis work in progress:
 - Lucilla Lanza, Chiara Ammendola (Rome) cross sections, separated structure functions
 - * Manav Bilakhia (UConn) multi-dimensional polarization analysis

E _b (GeV)	W (GeV)	Q² (GeV²)	Charge (mC)		
CL	AS e1f rur	ı: Apr Jun.	2003		
5.479 <i>G</i> eV	1.6-3.0	0.8-3.5	15.7		
CL	CLAS12 RG-K run #1: Dec. 2018				
6.535 <i>G</i> eV	1.6-2.4	0.3-3.5	18.2		
7.546 <i>G</i> eV	1.6-2.4	0.4-4.5	10.8		
CLAS12 RG-K run #2: Jan Mar. 2024					
6.4 <i>G</i> eV	1.6-2.4	0.3-3.5	91.4		
8.4 <i>G</i> eV	1.6-2.4	0.4-4.5	81.8		

RG-K Production – DVCS Data analysis

Comparison of data analysis: 16 runs from Fall 2018 10 runs from Spring 2024

E=6.5 GeV

1.
$$\theta_{\gamma_{meas}X} < 3^{\circ}$$

E=6.4 GeV

2.
$$\phi_{H\Gamma} < 10^{\circ}$$

3.
$$MPt_{e'p\gamma} < 0.3 \text{ GeV/c}$$

4.
$$|MM_{e'p\gamma}^2| < 0.03 \text{ GeV}^2$$

5.
$$|MM_{e'p}^2| < 0.4 \text{ GeV}^2$$

6.
$$0.5 \text{ GeV}^2 < MM_{e'\gamma}^2 < 2.5 \text{ GeV}^2$$

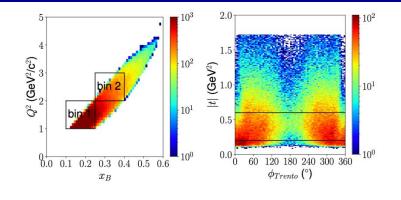
7.
$$-0.3 \text{ GeV} < ME_{e'p\gamma} < 0.9 \text{ GeV}$$

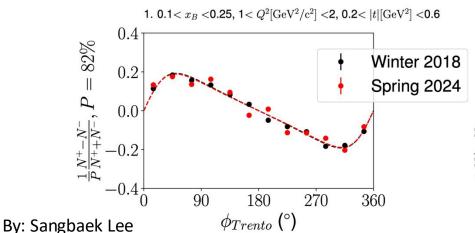
8.
$$\theta_{e'\gamma} > 10^{\circ}$$

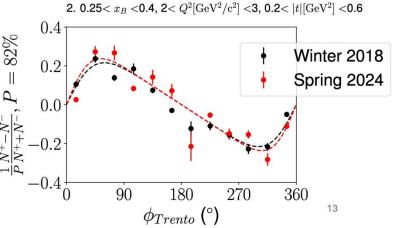
By: Sangbaek Lee

Cut ranges are also visualized on the x-axis. After this cut, statistics:

	FD proton	CD proton	Total
16 runs winter 2018	14k	77k	91k
10 runs spring 2024	18k	106k	124k

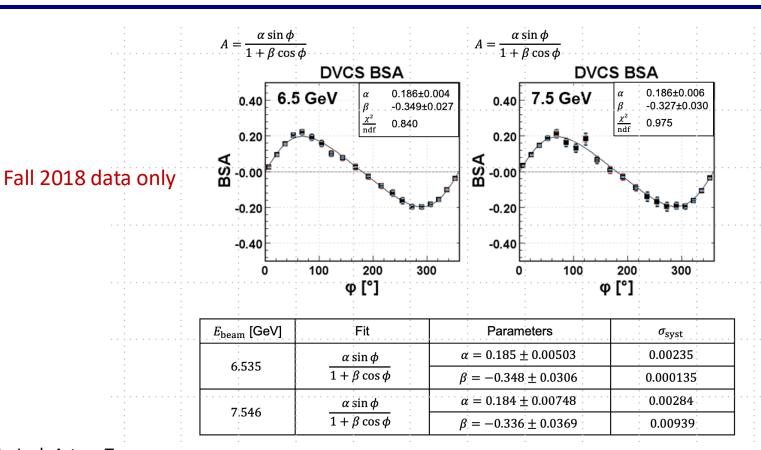



RG-K Production – DVCS Data analysis


BSA preliminary results

$$BSA(\phi_{Trento}) = \frac{A \sin \phi_{Trento}}{1 + B \cos \phi_{Trento}}$$

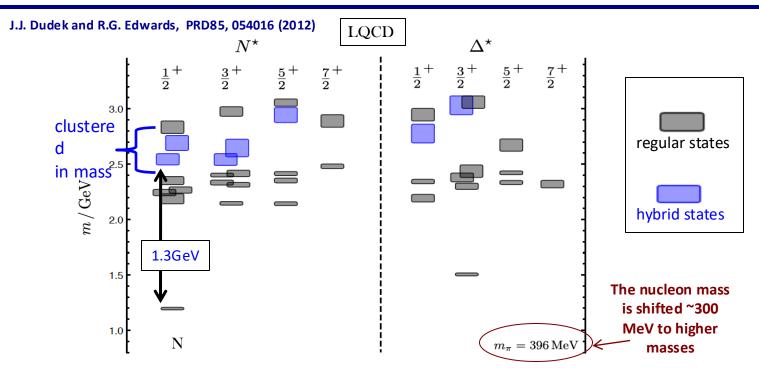
	A, bin 1	B, bin 1	A, bin 2	B, bin 2
16 runs winter 2018	0.148	0.635	0.186	-0.509
10 runs spring 2024	0.145	-0.644	0.192	-0.585



RG-K Production – DV π^0 p Data analysis

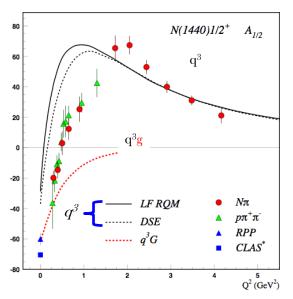
By:Josh Artam Tan

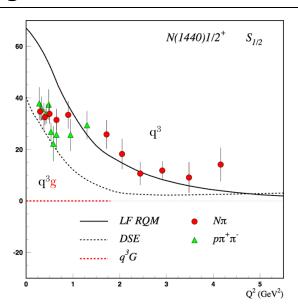
Conclusions


- ✓ Run group K has successfully collected 50 % of the data at 3 and 4 passes
- ✓ Full luminosity has been reached at 8.5 GeV with FT OFF
- ✓ Spring 2024 calibration is complete and preliminary data analysis shows very high-quality data Pass1 Readiness Review is planned for December 2025
- ✓ Data analysis on several channels, in addition to the flagship proposals, is ongoing in synergy

Thank you

Hybrid Baryons in LQCD


Hybrid states have same J^P values as qqq baryons. How to identify them?


- Overpopulation of N 1/2⁺ and N 3/2⁺ states compared to QM projections.
- $A_{1/2}$ ($A_{3/2}$) and $S_{1/2}$ show different Q^2 evolution. Can we do it?

Separating q³g from q³ States?

Precise CLAS results on electrocouplings clarified nature of the Roper

- $A_{1/2}$ and $S_{1/2}$ amplitudes at high Q^2 indicate 1^{st} radial q^3 excitation
- Significant meson-baryon coupling at small Q²

For hybrid "Roper", $A_{1/2}(Q^2)$ drops off faster with Q^2 and $S_{1/2}(Q^2) \sim 0$.

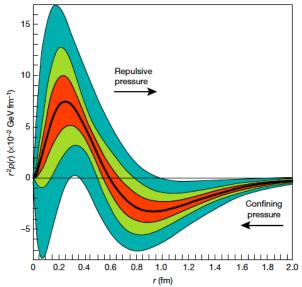
Q² Evolution of **N*** Electrocouplings

- Electrocouplings reveal different interplay between meson cloud and quark core:
 - -Important to study different N* states vs. distance scale
- Good agreement of the extracted N* electrocouplings from N π and N $\pi\pi$:
 - -Compelling evidence for the reliability of the results
 - -Channels have very different mechanisms for the non-resonant background

Data from the KY channels is critical to provide an independent extraction of the electrocoupling amplitudes for the higher-lying N* states

Accessing the Forces & Pressure on Quarks

Nucleon matrix element of EMT contains:


 $M_2(t)$: Mass distribution inside the nucleon

J (t) : Angular momentum distribution

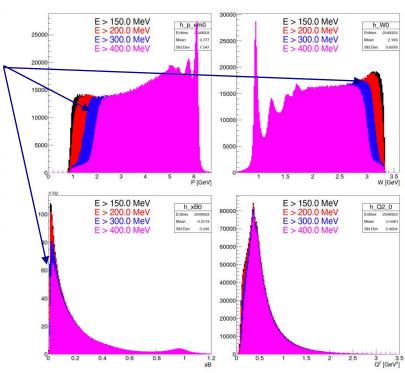
 $d_1(t)$: Shear forces and pressure distribution

$$\int xH(x,\xi,t)dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t)$$

Separate $M_2(t)$ and $d_1(t)$ through measurements at small/large ξ .

V. D. Burkert, L. Elouadrhiri & F. X. Girod Nature, 557 396-399 (2018)

Measuring these form factors, we learn about confinement forces.

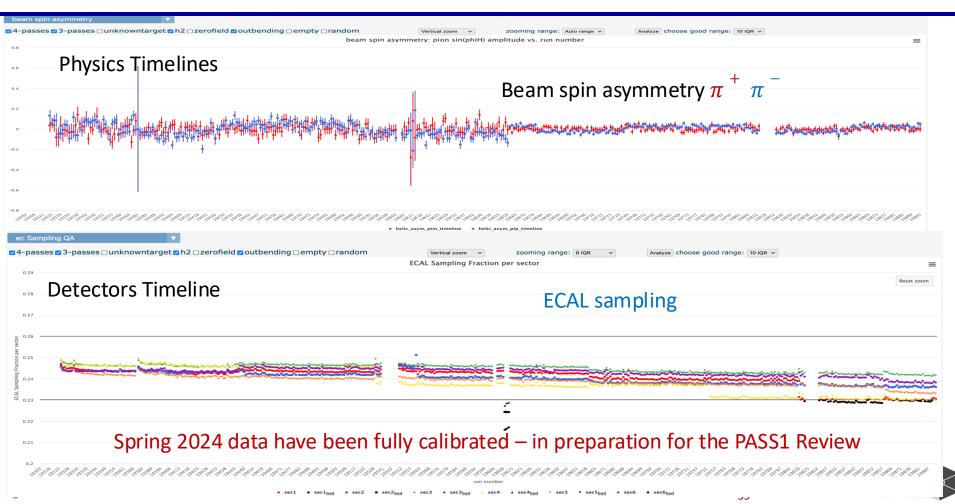


Trigger Validation Studies

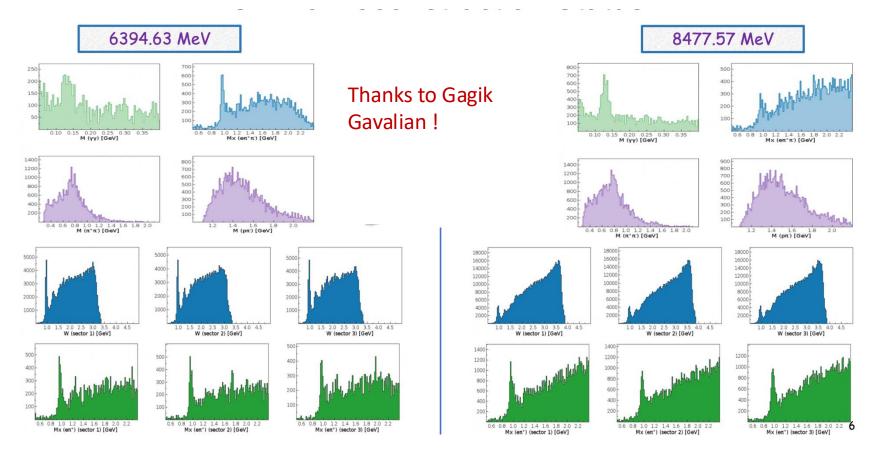
TABLE I. RGK trigger files							
Trigger File	Description	PCAL+ECAl	TORUS	Comments			
rgk_noDC_v1.0_150MeV	No DC roads	$150 \; \mathrm{MeV}$	Any	Production			
rgk_noDC_v1.0_200MeV		$200~\mathrm{MeV}$					
rgk_noDC_v1.0_300MeV		300 MeV		Production, HOLDOFF=3 us			
rgk_noDC_v1.1_300MeV		300 MeV		Production, HOLDOFF=2 us			
rgk_noDC_v1.2_300MeV		300 MeV		Production, HOLDOFF=1 us			
rgk_noDC_empty_v1.1_300MeV		300 MeV		Empty target			
rgk_noHTCC_noDC_v1.1_300MeV		300 MeV		wrong trigger delay			
rgk_noHTCC_noDC_v2.0_300MeV	no HTCC	300 MeV		trigger delay 84 ns			
rgk_out_v1.0_150MeV	With DC roads	$150~\mathrm{MeV}$	Outbending	Production			
rgk_out_v1.0_200MeV		$200~\mathrm{MeV}$					
rgk_out_v1.0_300MeV		300 MeV					
rgk_out_v1.1_300MeV		300 MeV		Production, HOLDOFF=2 us			
rgk_inb_v1.0_150MeV	With DC roads	150 MeV	Inbending	Production			
rgk_inb_v1.0_200MeV		$200~{ m MeV}$					
rgk_v1.0_zero_150MeV	No DC roads	150 MeV	Zero	Alignment run			
rgk_v1.0_zero_200MeV		$200~\mathrm{MeV}$		588			
rgk_v1.0_30kHz_150MeV	Random 30 kHz	$150~\mathrm{MeV}$	Any	Trigger Validation			
$rgk_v1.0_30kHz_200MeV$		$200~\mathrm{MeV}$	(8)	10000			
rgk_noDC_v1.0_validation.trg		150 MeV	Any	Includes 150,200,250 and 300 MeV			

TABLE II. Electron Trigger Rates

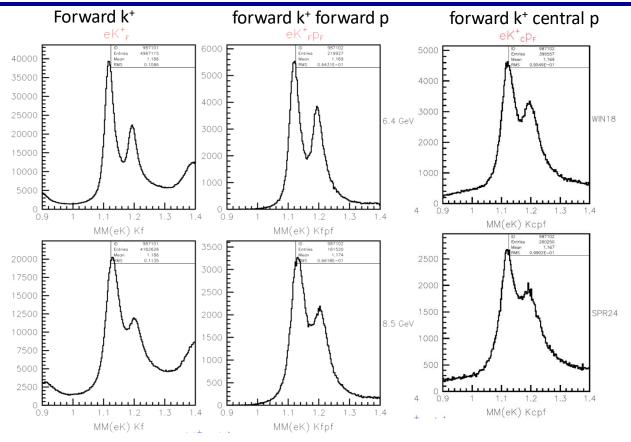
Beam Energy	$6.4~{ m GeV}$	$8.5~{ m GeV}$
Trigger file	$rgk_noDC_v1.1_300MeV.trg$	$rgk_noDC_v1.1_300MeV.trg$
Beam current	67 nA	79.9 nA
Electron trigger rate	29.2 kHz	$21.5~\mathrm{kHz}$
Faraday cup trigger rate (no prescale)	57.0 kHz	$68.6~\mathrm{kHz}$
FC prescale	129	129
Faraday trigger rate	$0.23~\mathrm{kHz}$	$0.53~\mathrm{kHz}$
Total trigger rate (with prescale)	29.4 kHz	22.0 kHz
Data rate	620 MB/s	520 MB/s
Live time	90.9%	93.4%



Optimized trigger was chosen: no DC roads, PCAL+ECAL threshold at 300 MeV, 2 μs holdoff time


Trigger rates: 30 kHz @ 6.4 GeV and 20 kHz @8.5 GeV – Live times > 90%

RG-K Production – on-line timelines


RG-K Production – on-line reconstruction

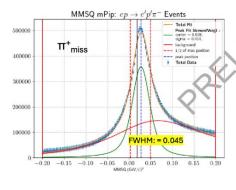
RG-K Production – KY Data analysis

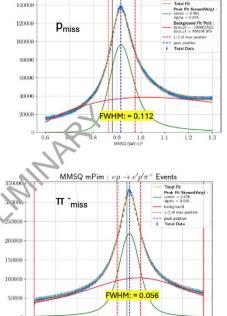
Comparison of 10 cooked files

E= 6.4 GeV

E= 8.5 GeV

By: Dan Carman

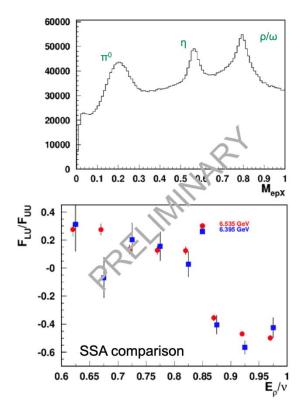



RG-K Production – on-line Data analysis

- 6.394 GeV
- 10 runs
- online calib/align

2π Analysis

[Krishna Neupane]



0.05 0.10

MMSQ (GeV/c)²

-0.20 -0.15 -0.10 -0.05 0.00

MMSQ mProt: $ep \rightarrow e'\pi^+\pi^-$ Events

Harut Havakian

0.15 0.20

RG-K Workforce

Analysis Coordinator:

Annalisa D'Angelo

Data Chef:

Lucilla Lanza

Run Coordinators:

Bill Briscoe Dan Carman **Axel Schmidt** Susan Schadmand

Thanks to the Hall-B scientific staff Thanks to all the Hall-B Engineers and Technicians Thanks to all the Shift Takers

Thanks to the PD: Daniel Carman

