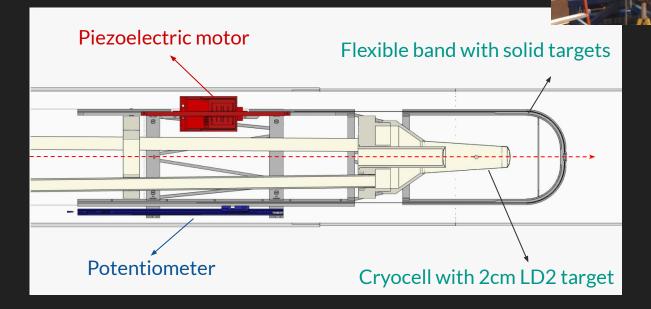
RG-E Updates

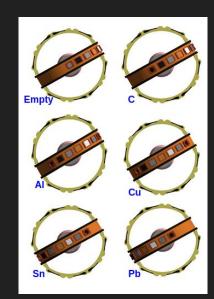
Antonio Radic

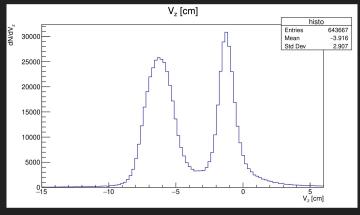

CLAS collaboration meeting November 18 - 21 2025

RG-E Double-target system

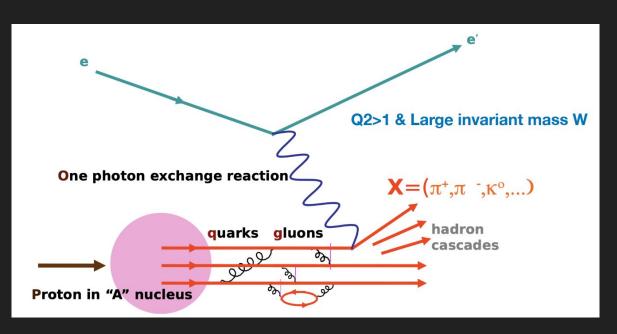
Solid target

- Carbon
- Aluminum
- Copper
- Tin
- Lead


Liquid target


Deuterium

Run summary and data collected


- Data taken in Spring 2024 from March 15th to May 19th
- 10.547 GeV electron beam
- Standard CLAS12 configuration with FT-OFF
- Three layers of FMT
- ~93% of data taking with inbending torus polarity

Target	Production current (nA)	Accumulat ed charge (mC)	Integrated luminosity (1/fb) (Solid target)	Events
LD2+C	85	25.24	24.38	3,391,704,235
LD2+Al	70	20.53	24.23	2,445,718,954
LD2+Cu	75	21.46	22.42	2,488,996,497
LD2+Sn	65	27.6	21.58	2,754,243,416
LD2+Pb	70	46.84	26.76	4,631,998,074
C only	85	2.29	3.79	148,150,553
Pb only	160	4.98	2.84	23,516,294

Semi-Inclusive Deep Inelastic Scattering (SIDIS)

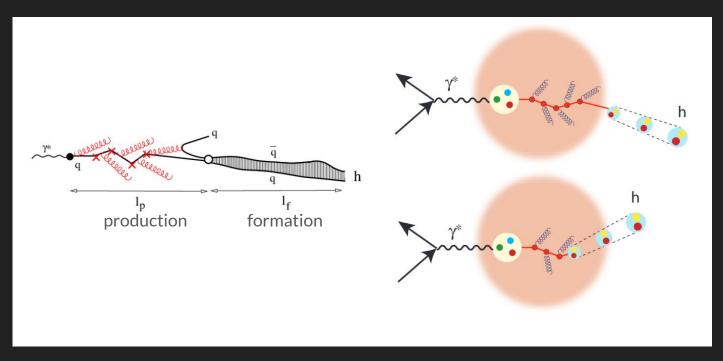
v: energy of the virtual photon (energy loss of the incoming electron).

Q2: square of four-momentum transferred.

Q2 > 1 GeV2: Deep process to look inside the structure of the nucleus.

W: invariant mass of the final state X.

W > 2 GeV: Inelastic. This cut removes the resonance region.

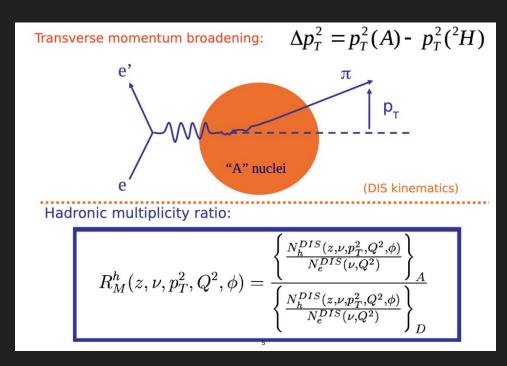

y: fraction of the energy of the initial electron transferred to the virtual photon.

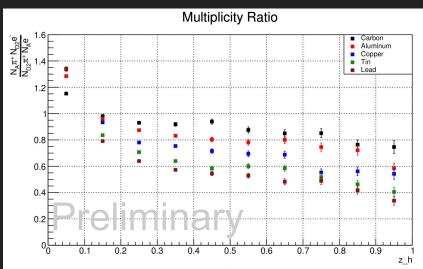
y < 0.85: reduce radiative effects.

Zh: fraction of the virtual photon energy carried to the produced hadron.

Pt: transverse momentum of the hadron with respect to the virtual photon.

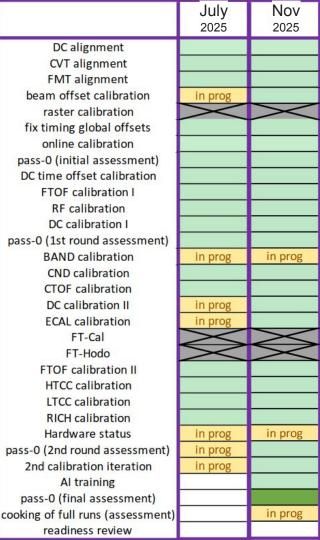
Hadronization in nuclear media



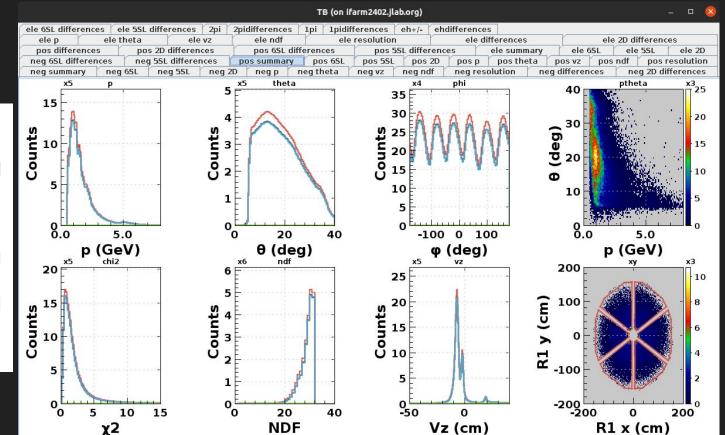

Prehadron formed **outside** the nucleus

Prehadron formed **inside** the nucleus

- I_n: production length. Quark propagates as a colored object.
- \bullet l_{f} : formation length. Color neutral prehadron propagates until becoming a final state hadron.


Physics and observables

RGE Calibration status


- Last cooked version: pass0.9 (last one before cooking review)
- Done from last collaboration meeting:
 - Al network for assisted DC tracking
 - DC tracking efficiency studies DC vs MC
 - Final sign-off of CLAS12 subsystems
- In progress:
 - Physics analysis for review
 - Preparing for review
- Next Step:
 - Calibration review
 - Run pass-1

Al network for assisted DC tracking

- Three AI networks were tested for RGE dataset
 - 2 new trained network based on RGE data
 - 1 network previously trained with RGD data
- RGE Al networks trained based on runs:
 - O 20150 (LD2+C)
 - O 20267 (LD2+Pb)
- All networks were tested on one LD2+C and LD2+Pb run
- Best performance network was chosen for cooking of the whole RGE dataset

Al tracking validation - Pb run and Pb network

• Al

Conventional

 Al matched with Conventional

 Conventional not matched with AI

Al over Conventional results

Network applied to LD2+C run

C network

charge	type	gain efficiency
neg	0	1.0810 0.9970
neg	6	1.0707 0.9978
neg	5	1.2906 0.9793
charge	type	gain efficiency
charge pos	type 0	gain efficiency 1.0838 0.9946
pos	jõ	1.0838 0.9946

type	eh+/e	eh-/e
conventional	0.6515	0.1527
ai	10.69661	0.1696

Gili/e	C11-/C
0.6515	0.1527
0.6966	0.1696

| 0.6937 | 0.1590 |

Network applied to LD2+Pb run

C network

neg neg	type 0 6	1.0735 0.9972 1.0635 0.9981
neg	5	1.2891 0.9776
charge	type	gain efficiency
pos	0	1.0779 0.9952
pos	6	1.0713 0.9962
pos	5	1.2139 0.9731
type		eh+/e eh-/e
conventi	onal	0.6525 0.1442

Pb network

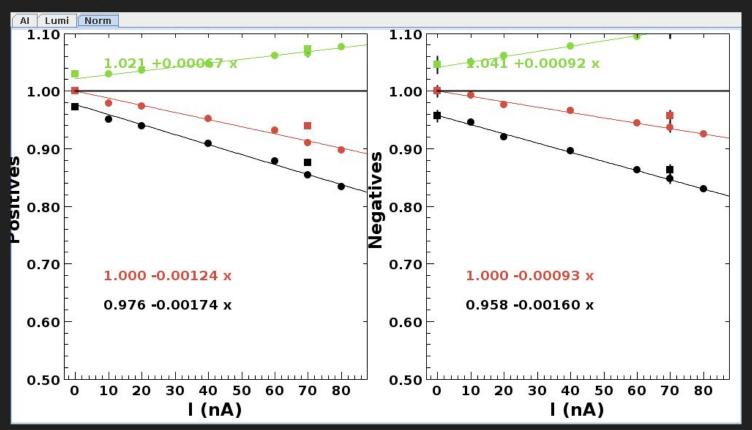
charge neg neg	type 0 6	1.0868	efficiency 0.9976 0.9984
neg	1 5		0.9814
- 5			
charge	type	gain e	efficiency
pos	0	1.0949	0.9953
pos	6	1.0851	0.9964
pos	5	1.2799	0.9747
type		l eh+/e	l eh-/e l
conventi	onal		0.1527
ai		0.7023	0 1705

Pb network

charge	type	gain e	efficiency
neg	0	1.0785	0.9977
neg	6	1.0677	0.9985
neg	5	1.3113	0.9792
charge	type	gain e	efficiency
pos	0	1.0874	0.9957
pos	6	1.0772	0.9966
pos	5	1.3001	0.9753
type		eh+/e	eh-/e
conventional		0.6525	0.1442
		0.0000	0.4507

RGD network

charge	type	gain efficiency
neg	0	1.0765 0.9946
neg	6	1.0670 0.9967
neg	5	1.2703 0.9518
charge	type	gain efficiency
pos	0	1.0809 0.9916
pos	6	1.0695 0.9929
pos	5	<mark>1.3001</mark> 0.9664
type conventi ai	onal	eh+/e eh-/e 0.6515 0.1527 0.6951 0.1687


RGD network

charge	type	gain efficiency
neg	0	1.0688 0.9947
neg	6	1.0601 0.9970
neg	5	1.2563 0.9420
charge	type	gain efficiency
pos	0	1.0749 0.9924
pos	6	1.0632 0.9936
pos	5	<mark>1.3182</mark> 0.9677
type conventic ai	onal	eh+/e eh-/e 0.6525 0.1442 0.6921 0.1582

DC tracking efficiency studies

- 3 sets of lumi scans
 - LD2+Pb: runs 20236-20243, 10 to 100 nA
 - LD2+Al: runs 20490-20493, 5 to 45 nA
 - LD2+Pb: runs 20494-20505, 5 to 55 nA
 - Production runs 20256 (LD2+Pb) and 20481 (LD2+Al)
- Al
- Conventional
- AI/Conventional Ratio

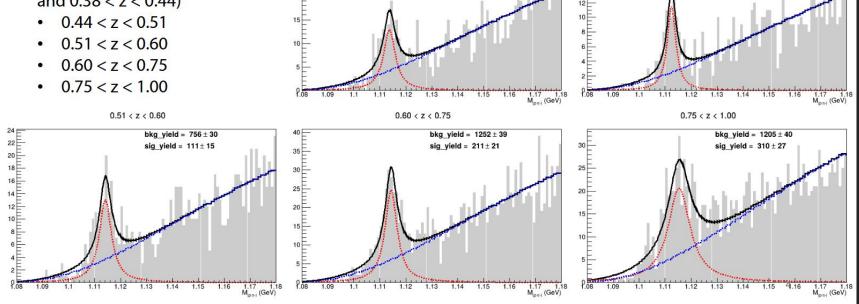
DC tracking efficiency studies - lumi scans

Analyses in progress

- Uditha's Lambda analysis
- Ryan's inclusive analysis -> Next presentation
- Antonio's pions MR analysis
- Mike's proton analysis
- Simon's BEC for pions analysis
- Sebouh's Di-hadron Correlations analysis
- Sebouh' Anti-proton analysis

Lambda Invariant Mass Distributions from LD2

Plots made by Uditha


0.44 < z < 0.51

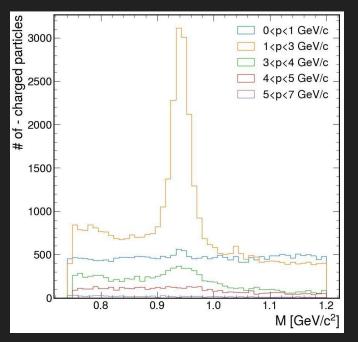
bkg_yield = 560 ± 25

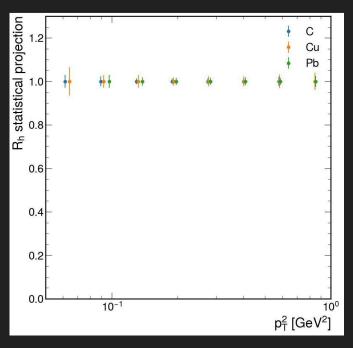
sig yield = 70 ± 11

Bins Used:

0.28 < z < 0.44
(combination of 0.28 < z < 0.38
and 0.38 < z < 0.44)

0.28 < z < 0.44


bkg vield = 894 ± 32


sig yield = 108 ± 15

Plots by Sebouh

Anti-Proton analysis

 Invariant mass distributions for Anti-proton candidates indifferent bins in momentum

 Statistical projections for bins in Pt² for R_h

Summary

- Calibration almost completed. Pass-1 review soon
- Al network was produced to be used in RGE data that increase tracks yield in DC tracking
- Increase of track efficiency from ~85 to over 90% with new RGE AI network
- Multiple analyses in progress using RGE data