
Plans for AI/ML Assisted and Conventional
Central Tracking

Richard Tyson, Veronique Ziegler,

Tongtong Cao, Raffaella De Vita

Pierre Chatagnon, Mathieu

Ronayette, Bhawani Singh

CLAS12 Collaboration Meeting

November 18, 2015

2

AI-Driven “Denoising” Algorithm for CVT Tracking ~ Motivation

• Many seeds (track candidates) share

clusters of hits.

• Difficult to select the “good” candidate

amongst a set of candidates that share

clusters with it.

• Leads to a large number of “fake tracks”

→ wrong clusters-on-track selection

(combinatorials), loss of tracking efficiency,

increased computation times

• Worsening of track parameters resolution

due to background hits polluting clusters,

and resulting in wrong clusters-on-track

selection

• Need for development of denoising

algorithm(s)

Seed Multiplicity in CVT Tracking – RGE Data Example

3

Denoising Model: Graph Neural Networks (GNN)

• Graph are made of nodes (eg hits) & edges.

• During learning, “message passing” updates

each node with information from other nodes.

• This is learned (eg what information is passed

is the output of a small neural network).

• GNNs can be used in different ways:

• Node classification (denoising)

• Edge classification (track finding)

4

Denoising AI Development

• MC sample with single generated muon track

(signal hits, order 0) and merged background

(order!=0).

• Input variables are:

• Sector, layer, strip

• x, y, z (1 & 2)

• Centroid and seed weights (normalized

distance to cluster centroid/seed)

• High segmentation in CVT means we cannot

use fixed size arrays → employ different

technology to FD (GNNs instead of CNNs).

• Data processing, algorithm, training and

coatjava inference code is available (see

github).

Only Sector 1

https://github.com/rtysonCLAS12/CD_ML_Denoising

5

Performance
SVT Layer 1 SVT Layer 2 SVT Layer 3

SVT Layer 4 SVT Layer 5 SVT Layer 6

BMT Layer 1 BMT Layer 2 BMT Layer 3

BMT Layer 4 BMT Layer 5 BMT Layer 6

6

AI Developments Next Steps

Doing exploratory work on improvements to CVT.

We have preliminary results that look encouraging

There is still a lot to do → expect timescales of a year.

Workforce:

• Mathieu, Pierre, Bhawani will work on improving AI/ML model

• Veronique will work on conventional improvements to tracking

• Tongtong & Veronique will work on coatjava integration and validation

Conventional Tracking Improvements – CTOF Matching
All seeds
• Many seeds (track candidates) share clusters of

hits
• Difficult to select the “good” candidate amongst

a set of candidates that share clusters with it
• Seeds are fit using a global method that

assumes a constant 5-T field solenoidal field →
using swimming to fit each seed not viable;
global chi^2 and NDF used to select the seed
from a set of seeds that share clusters → when
the “real” seed (MC studies) has missing layer(s)
in its trajectory, the wrong seed can be selected.

Seeds matched to the CTOF
• Reducing the number of seeds is helpful

to diminish the number of candidates
sharing clusters and the overall number
of seeds passed on to the fitter (faster
tracking)

• Matching to the CTOF done by reading
the CTOF hits bank and selected hit
with OR/AND TDC/ADC hits (only ADC
hits are displayed in CED).

Selected seeds matched to the CTOF
• Seeds remaining after “best” candidate

selection amongst a group of seeds that
share clusters of hits.

• With CTOF matching, fewer
selected seeds which have better
chi^2/NDF

• Reduction of ghost tracks to be
validated in MC (with background
merging)

7

Plans

• Further improvements in seed selection
• Current algorithm uses sorting algorithms by chi^2/NDF
• Investigating missing hits on track using layer efficiency tables → if a hit on track is

missing in an efficient layer ➔ flag as potential ghost track

• Investigating using roads for SVT seeding
• Concept:

• Development of a precomputed pattern-matching algorithm (road finder).
• A road = expected strip hits for a track hypothesis.

8

Goal: Convert millions of compressed road patterns into an efficient lookup structure.

Process:
1. Load per-paddle .bin.gz files

1. Each file contains bit-packed roads, created by a script
2. Each road = sequence of (layer, sector, strip) hits created by computing helical tracks trajectories looping

over, q, p, theta, phi, z, and determining the intersecting surface and nearest strip from geometry
2. Extract “index keys” (from file created by index-building script)

1. For each element:
bin in phi corresponding to the strip implant end point (360 bins)
key = (phiBin<<16 | sector<<8 | layer) embedded in a long

3. For each paddle, build temporary structure:
Map< key → list of roadIds >
4. Compact into final UBER index:
Map<Integer paddle → Map<Long key → int[] roadIds>>
5. Store full road list in RoadIndex.UberEntry[] roadTable
→ Each entry stores (paddle, bitOffset, nElements)
→ No full decode yet (lazy loading)

UBER index built:
 keys → road ID lists
 roadTable → bit offsets

For a given CTOF paddle each road (with trajectory landing on
that paddle) saved in gz file:
 short nElements

 nElements:
 long packedStripID (16-bit encoded sector+layer+strip)

Conventional Tracking – Roads

9

Roads required to intersect the CTOF
→ built-in CTOF-matching

Fast Road Lookup (Event Processing)
Input per event: A set of cluster keys per paddle

Reverse inverted index:
•Instead of iterating roads → check clusters
•We iterate clusters → check road membership
Complexity:
O(clusterKeys + matchedRoads)
No decoding done yet.

Lazy Road Decode + LRU Cache

Steps:
1.Build 64-bit cache key:
[paddle:16][offsetBytes:32][nElements:16]
2.Check LinkedHashMap LRU cache (20k entries)
3.If miss:

1. Seek into paddle byte array using bit-skips (offsetBytes)
2. Read (layer, sector, strip) triplets
3. Build CompactRoad
4. Insert into cache

Why lazy decode?
•50M+ possible roads
•Only a few hundred decoded per event
•Saves GBs of RAM

Conventional Tracking – Roads

10

Seeding SVT Tracks from Roads

Seed using roads with input: clusters, CTOF paddles,
paddleBytes (bit packed roads information for a given paddle)
I. Obtain the list of CTOF paddles with hits in the event
II. Per paddle:
1. Build the same cluster keys used for road indexing
2. findRoad() → best matching UBER entry
3. getRoad() → decode only that road
4. matchRoadToClusters():

1. Match by (sector,layer)
2. Pick closest strip distance per element

5. If ≥ 4 matched clusters → accept as SVT seed

Conventional Tracking – Roads

Seeding CVT Tracks from Roads

Seed CVT tracks using the conventional seeding
algorithm (SSA, SLA) for each set of clusters matched to
a road, including BMT clusters

Each such seed is fitted using the Kalman Filter
algorithm

➢ In development…

11

Validations

o Roads-building binning:
• p → 10 MeV
• Theta, phi → 1 deg.
• z (RGA) → target length / 5 (small z sensitivity for SVT)

o Performance
• Memory footprint
• Reconstruction speed
• Tracking efficiency
• Impact on resolution

Conventional Tracking – Roads

Plans

o Run validations on phase space coverage for roads
o Validate feasibility of incorporation in

reconstruction stack (performance)
o Validate tracking performance

12

BACKUPS

13

Dedicated ML Banks
Bankdefs: cvtnn.json

• nT = #reconstructed hits on
track with order 0 (true hits
on track)

• nTot = #reconstructed hits on
tracks

• nG = #generated hits
belonging to simulated track

• Purity = nT / nTot

• Efficiency = nT / nG

• If purity < efficiency: list of
HOTs contains fakes
& # HOTs > generated HOTs

15

Denoising Model: Graph Neural Networks (GNN)

• Graph are made of nodes (eg hits) & edges.

• During learning, “message passing” updates
each node with information from other nodes.

• This is learned (eg what information is passed
is the output of a small neural network).

• GNNs can be used in different ways:
• Node classification (denoising)
• Edge classification (track finding)

16

GravNet Layers (arxiv:902.07987)

• GravNet offers a “smart” way of grouping
nodes before message passing (useful due to
high hit multiplicity).

• A neural network predicts a latent space
position for each hit

• We group the hits by distance in latent space
(kNN)

• Message passing is weighted by distance

• A neural network outputs the probability that
each hit is signal, based on info from the hit
and neighbours

Note: kNN in many
dimensions is slow.

In 1D use sorting (fast).

In ND, first sort over
random dimension,
select 2*k, then do

knn

https://arxiv.org/pdf/1902.07987

17

Model Restrictions

• Due to number of hits per event, we cannot create
edges between all hits:
• GravNet reduces impact of this.
• Further restrict hits to sectors (based on SVT)
• Restrict by φ? Adjacent hits in a layer? Distance

between neighbour layers?

• I thought that the Deep Java Library in coatjava
meant we need stick to standard PyTorch:
• Use padding eg define a maximum number of

hits per event, pad with zeros for the rest of it
• Padded events are not included in message

passing.

18

Improvements

Events with only background, keep?
Events with partial track due to splitting into sectors, keep?
More than 1 track per event
10x more data means ~20h training, we can randomly
sample from full dataset and train in subsets of data for
subsets of total number of epochs

Training Data

Polar coordinates instead of X/Y/Z?
Cluster info?
What variables are ”well” simulated?

Variables

Need 10x more training data
Further restriction in graph formation?
Sort out training data
Sort out variables
Try out different hyperparameters (record efficiency,
purity, training and inference times) Integration in
Coatjava

To Do

Decrease learning rate for smoother loss v epochs
Latent space dimension (s=1 for now)
Number of neighbours (k=30)
Message passing space (34)
Number of GravNet layers (16)
Output neural net layout

Hyperparameter
Example code in the github & networks in these slides
Can use similar engine to DC denoising
Needs functionality:
• parse hits bank into arrays
• change order based on output, mask in tracking
• Measure full reconstruction efficiency & resolutions

Coatjava Integration

	Slide 1: Plans for AI/ML Assisted and Conventional Central Tracking
	Slide 2: AI-Driven “Denoising” Algorithm for CVT Tracking ~ Motivation
	Slide 3: Denoising Model: Graph Neural Networks (GNN)
	Slide 4: Denoising AI Development
	Slide 5: Performance
	Slide 6: AI Developments Next Steps
	Slide 7: Conventional Tracking Improvements – CTOF Matching
	Slide 8: Plans
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: BACKUPS
	Slide 14: Dedicated ML Banks
	Slide 15: Denoising Model: Graph Neural Networks (GNN)
	Slide 16: GravNet Layers (arxiv:902.07987)
	Slide 17: Model Restrictions
	Slide 18: Improvements

