Plans for AI/ML Assisted and Conventional
Central Tracking

Richard Tyson,Veronique Ziegler,
Tongtong Cao, Raffaella De Vita
Pierre Chatagnon, Mathieu
Ronayette, Bhawani Singh

CLAS |2 Collaboration Meeting
November 18,2015

JefferSon Lab CIQé‘ﬁ

Al-Driven “Denoising” Algorithm for CVT Tracking ~ Motivation

Seed Multiplicity in CVT Tracking — RGE Data Example

* Many seeds (track candidates) share
clusters of hits.

 Difficult to select the “good” candidate
amongst a set of candidates that share
clusters with it.

* Leads to a large number of “fake tracks”
—> wrong clusters-on-track selection
(combinatorials), loss of tracking efficiency,
increased computation times

* Worsening of track parameters resolution
due to background hits polluting clusters,
and resulting in wrong clusters-on-track
selection

* Need for development of denoising
algorithm(s)

2

Jeffe

rson Lab CIQg‘a

Denoising Model: Graph Neural Networks (GNN)

Graph are made of nodes (eg hits) & edges.

During learning, “message passing” updates

each node with information from other nodes.

This is learned (eg what information is passed
is the output of a small neural network).

GNN's can be used in different ways:
* Node classification (denoising)
* Edge classification (track finding)

Input

Hidden layer

Hidden layer

Output

Jeff.;gon Lab CIngﬁ

===

Denoising Al Development

MC sample with single generated muon track
(signal hits, order 0) and merged background
(order!=0).

Input variables are:
* Sector, layer, strip
* xX%z(l &2)
* Centroid and seed weights (normalized
distance to cluster centroid/seed)

High segmentation in CVT means we cannot

use fixed size arrays — employ different
technology to FD (GNNs instead of CNNs).

Data processing, algorithm, training and
coatjava inference code is available (see

github).

Hits in X & Y ()

« Noise
o Signal
RIS
0® © ‘\..
o 9 e ’.o
Only Sector |
..'...

Hits in Z (6)

Jeffe

==

2

rson Lab CIQg‘a

https://github.com/rtysonCLAS12/CD_ML_Denoising

Performance

Fraction

Metrics

1.1

1.04

e Signal Efficiency
e Noise Rejection

0.2

0.4

06 08 1

Threshold on Response

Response (Layer 1)

Response (Layer 2)

Response (Layer 3)

SVT Layer 1

Response (Layer 4)

Noise
Signal

SVT Layer 2

Response (Layer 5)

1014

SVT Layer 3

Response (Layer 6)

Noise
Signa

SVT Layer 4

Response (Layer 7)

Noise
signal

W Noise
e Signal

SVT Layer 5

Response (Layer 8)

SVT Layer 6

Response (Layer 9)

Noise
signal

0.0

BMT Layer 1

0.2 0.4 0.6 0.8

Response (Layer 10)

Noise
signal

s Noise
W Signal

BMT Layer 2

Response (Layer 11)

102

BMT Layer 3

Response (Layer 12)

Noise
signal

BMT Layer 4

s Noise
e Signal

BMT Layer 5

BMT Layer

Noise
signal

Al Developments Next Steps

Doing exploratory work on improvements to CVT.

We have preliminary results that look encouraging

There is still a lot to do — expect timescales of a year.

Workforce:
* Mathieu, Pierre, Bhawani will work on improving AI/ML model
* Veronique will work on conventional improvements to tracking

* Tongtong & Veronique will work on coatjava integration and validation

J)e,f_f.;gon Lab CIQg"ﬁ

Conventional Tracking Improvements — CTOF Matching

All seeds

Many seeds (track candidates) share clusters of
hits

Difficult to select the “good” candidate amongst
a set of candidates that share clusters with it
Seeds are fit using a global method that
assumes a constant 5-T field solenoidal field 2>
using swimming to fit each seed not viable;
global chi®2 and NDF used to select the seed
from a set of seeds that share clusters 2 when
the “real” seed (MC studies) has missing layer(s)

in its trajectory, the wrong seed can be selected.

.
= /“'a"-"s‘. g ol 1
b
4

L7

¥
.

.
\
w
{

.
L

.
V.

-
ot ——

)/ -
l,!-.

LT

Seeds matched to the CTOF

Reducing the number of seeds is helpful
to diminish the number of candidates
sharing clusters and the overall number

of seeds passed on to the fitter (faster
tracking)

Matching to the CTOF done by reading

the CTOF hits bank and selected hit

with OR/AND TDC/ADC hits (only ADC

hits are displayed in CED).

Selected seeds matched to the CTOF
Seeds remaining after “best” candidate
selection amongst a group of seeds that

share clusters of hits.

e With CTOF matching, fewer
selected seeds which have better
chi*2/NDF

* Reduction of ghost tracks to be
validated in MC (with background
merging)

Plans

Further improvements in seed selection
e Current algorithm uses sorting algorithms by chi*2/NDF
* Investigating missing hits on track using layer efficiency tables - if a hit on track is
missing in an efficient layer =2 flag as potential ghost track

Investigating using roads for SVT seeding
* Concept:
* Development of a precomputed pattern-matching algorithm (road finder).
* A road = expected strip hits for a track hypothesis.

Conventional Tracking — Roads

Goal: Convert millions of compressed road patterns into an efficient lookup structure.

Roads required to intersect the CTOF

> built-in CTOF-matching For a given CTOF paddle each road (with trajectory landing on

that paddle) saved in gz file:
short nElements
Process: nElements:

1. Load per-paddle .bin.gz files long packedStripID (16-bit encoded sector+layer+strip)

1. Each file contains bit-packed roads, created by a script
2. Each road = sequence of (layer, sector, strip) hits created by computing helical tracks trajectories looping
over, g, p, theta, phi, z, and determining the intersecting surface and nearest strip from geometry
2. Extract “index keys” (from file created by index-building script)
1. For each element:
bin in phi corresponding to the strip implant end point (360 bins)
key = (phiBin<<16 | sector<<8 | layer) embedded in a long
3. For each paddle, build temporary structure:

Map< key = list of roadlds >

4. Compact into final UBER index: UBER index built:
Map<Integer paddle > Map<Long key - int[] roadlds>> keys —> road ID lists
5. Store full road list in Roadindex.UberEntry[] roadTable roadTable - bit offsets

— Each entry stores (paddle, bitOffset, nElements)
— No full decode vyet (lazy loading)

Conventional Tracking — Roads

Fast Road Lookup (Event Processing)
Input per event: A set of cluster keys per paddle

Reverse inverted index:

*Instead of iterating roads - check clusters
*We iterate clusters - check road membership
Complexity:

O(clusterKeys + matchedRoads)

No decoding done yet.

Lazy Road Decode + LRU Cache

Steps:
1.Build 64-bit cache key:
[paddle:16][offsetBytes:32][nElements:16]
2.Check LinkedHashMap LRU cache (20k entries)
3.1f miss:
1. Seek into paddle byte array using bit-skips (offsetBytes)
2. Read (layer, sector, strip) triplets
3. Build CompactRoad
4. Insert into cache
Why lazy decode?
*50M+ possible roads
*Only a few hundred decoded per event
*Saves GBs of RAM

Conventional Tracking — Roads

Seeding SVT Tracks from Roads Seeding CVT Tracks from Roads

Seed using roads with input: clusters, CTOF paddles,
paddleBytes (bit packed roads information for a given paddle)
|. Obtain the list of CTOF paddles with hits in the event
Il. Per paddle:
1. Build the same cluster keys used for road indexing
2. findRoad() - best matching UBER entry
3. getRoad() - decode only that road
4. matchRoadToClusters():

1. Match by (sector,layer)

2. Pick closest strip distance per element
5. If > 4 matched clusters - accept as SVT seed

Seed CVT tracks using the conventional seeding
algorithm (SSA, SLA) for each set of clusters matched to
a road, including BMT clusters

Each such seed is fitted using the Kalman Filter
algorithm

» In development...

Conventional Tracking — Roads

Validations

o Roads-building binning:

p 2 10 MeV
Theta, phi 2 1 deg.
z (RGA) - target length / 5 (small z sensitivity for SVT)

o Performance

Memory footprint
Reconstruction speed
Tracking efficiency
Impact on resolution

12

Plans

O

Run validations on phase space coverage for roads
Validate feasibility of incorporation in
reconstruction stack (performance)

Validate tracking performance

BACKUPS

edicated ML Banks

Bankdefs: cvtnn.json

{
"name": "CVT::MLHit",
"group": 28508,
"item" : 52,

"info": "reconstructed hits (2nd pass tracking)",

“entries": [
{"name":"id",
{"name":"sidx",
{"name" :"tidx",
{"name" :"rectid",
{"name":"recsid",
{"name" :"mctid",
{"name":"sector",
{"name":"layer",
{"name" :"type",
{"name":"strip",
{"name":"order",
{"name":"cid",
{"name":"cweight",
{"name" :"sweight",
{"name":"x1",
{"name":"y1",
{"name":"z1",
{"name":"x2",
{"name":"y2",
{"name":"z2",

}l

“name”: "CVT::MLSeed",
"group": 28508,
"item" : 63,

"info": "reconstructed seeds (2nd pass tracking)",

“entries": [
"name" :"id",
"name" :"purity",
"name" :"efficiency",

"name": "CVT::MLTrack",
"group": 205808,
"item" : 64,

"info": "reconstructed seeds (2nd pass tracking)",

“entries": [
{"name”:"id",
{"name" :"purity",
{"name" :"efficiency",

"type":"s",
lltypell H llsll .
|ltypell H llsll N
"type":"s",
lltypell H llsll .
|ltypell H llsll N
"type":"B",
lltypell H llBll .
|ltypell H llBll N
"type":"s",
|ltypell H llBll N
"type":"s",
lltypell H llFll .
|ltypell H llFll N
lltypell H llFll .
lltypell H llFll .
|ltypell H llFll N
lltypell H llFll .
lltypell H llFll .
|ltypell H llFll N

“type":"s", “info":"
“type":"F", "info

"type":"S", "info":"id of the track"},
"seed purity: Nb of reconstructed true hits in track / tetal hits on track"},
"type":"F", "info":"seed purity: Nb of reconstructed true hits in track / MC hits in gemerated track"}

“type":"F", "info'

"info":"id of the hit"},

"info":"row in the MLSeed bank"},
“info":"row in the MLTrack bank"},
"info":"reconstructed track id assoc
"info":"reconstructed seed id associ
"info":"MC track id associated with
"info":"sector"},

"info":"layer (1...6)=5VT; (7...12)=
"info":"detector type: @=SVT; 1=BMT-
"info":"strip number"},
"info":"order 8=MC hit-on-track; 1=n
“info":"associated cluster id"},
"info":"1/1+|normalized difference t
"info":"1/1+|normalized difference t
"info":"geometric strip first end-po
"info":"geometric strip first end-po
"info":"geometric strip first end-po
"info":"geometric strip second end-p
"info":"geometric strip second end-p
"info":"geometric strip second end-p

tthe hit"},

BMT"},
Z; 2=BMT-C"},

oise hit"},

lint x-coordinate"},
int y-coordinate"},
lint z-coordinate"},

oint z-coordinate"}

id of the track"},

iated with the hit"},
ated with the hit"},

oint x-coordinate"},
oint y-coordinate"},

o associated cluster centroid|"},
o associated cluster

seed|"},

Next

400

s @

W EA
AE wu

SHOEGO A

]

display Banks

300

200

100

-100

=200

-300

Visibility
o Single Acoum.
Cosmic Tracks Reg HE
Crosses Recon Hits

CVTRecKF Traj
ADC Data

CVTRec Traj
CVTPI Traj

Truth

Reg TE
CVTRec Tracks
CVTP1 Tracks
Clusters

Event source: HIPOFILE

Sequential number: 203
True number: 200645

File: [Users/ziegler/BASE/Tracking/CVT-Al/coatjava/coatjava/te

Relative Accumulation or ADC Value

L] 0.2 0.5

CVT::MLTrack

-m prev seq# 203

true # 200645

id efficiency

purity

1 0.93939

0.93939

-400

reconstructed true hits in seed / total hits on seed"},
“type":"F", "info":"seed purity: Nb of reconstructed true hits in seed / MC hits in gemerated track"}

on track)

tracks

n; = #reconstructed hits on
track with order O (true hits

N = #reconstructed hits on

* ng = #generated hits
belonging to simulated track

* Purity=n;/ ny,
* Efficiency =n;/ ng

* If purity < efficiency: list of
HOTs contains fakes
& # HOTs > generated HOTs

15

Denoising Model: Graph Neural Networks (GNN)

* Graph are made of nodes (eg hits) & edges.

Hidden layer Hidden layer
M M o M ” E e
* During learning, “message passing” updates 7 7
. . . \. . .\" .
each node with information from other nodes. | L

e This is learned (eg what information is passed
is the output of a small neural network).

* GNNSs can be used in different ways:
« Node classification (denoising) e /..
* Edge classification (track finding) Y\ =N

.ggtf/egon Lab CIQg"ﬁ

16

GravNet Layers (arxiv:902.07987)

Note: kNN in many

GravNet offers a “smart” way of grouping dimensions is slow.

nodes before message passing (useful due to L T
. . . =S 4 (a) O S s ,\(b,) \ In 1D use sorting (fast).
high hit multiplicity). O o
FiN - O /@/ \ In ND, first sort over
A neural network predicts a latent space O Fig . \./@"" g ’ di .
position for each hit O ,/ rar|1 c;rg*llrrlins%n,
N selec ,then do

We group the hits by distance in latent space knn
(kNN) y

o . @ .\
Message passing is weighted by distance e

du
Vi !

A neural network outputs the probability that ,, d/ __;rﬁ. \
each hit is signal, based on info from the hit ° /d” N R Four
and neighbours £ vs.f" fi=9Q Max(Fi

https://arxiv.org/pdf/1902.07987

Model Restrictions

* Due to number of hits per event, we cannot create
edges between all hits:

GravNet reduces impact of this.

Further restrict hits to sectors (based on SVT)
Restrict by ¢? Adjacent hits in a layer? Distance
between neighbour layers?

* | thought that the Deep Java Library in coatjava
meant we need stick to standard PyTorch:

Use padding eg define a maximum number of
hits per event, pad with zeros for the rest of it
Padded events are not included in message
passing.

sector_mapping = {

1: {

’
, 12):

, 10, 11, 12, 131,

, 2): [8, 9, 10],
A
6
1

10, 11, 12, 13, 141,

: [14, 15, 16, 17, 18],

31,

Hits per Event

17

1043

1034

1023

1073

109

100

200 300
Hits per Event
T T

mm All
I Noise

Signal

400 >
{

wiNd Ipr

Improvements

To Do

Need 10x more training data

Further restriction in graph formation?

Sort out training data

Sort out variables

Try out different hyperparameters (record efficiency,
purity, training and inference times) Integration in
Coatjava

Coatjava Integration

Example code in the github & networks in these slides
Can use similar engine to DC denoising

Needs functionality:

e parse hits bank into arrays

e change order based on output, mask in tracking

* Measure full reconstruction efficiency & resolutions

18

Training Data

Events with only background, keep?

Events with partial track due to splitting into sectors, keep?
More than 1 track per event

10x more data means ~20h training, we can randomly
sample from full dataset and train in subsets of data for
subsets of total number of epochs

Variables

Polar coordinates instead of X/Y/Z?
Cluster info?

What variables are “well” simulated?

Hyperparameter

Decrease learning rate for smoother loss v epochs
Latent space dimension (s=1 for now)

Number of neighbours (k=30)

Message passing space (34)

Number of GravNet layers (16)

Output neural net layout Jeffer€on Lab

VAV

	Slide 1: Plans for AI/ML Assisted and Conventional Central Tracking
	Slide 2: AI-Driven “Denoising” Algorithm for CVT Tracking ~ Motivation
	Slide 3: Denoising Model: Graph Neural Networks (GNN)
	Slide 4: Denoising AI Development
	Slide 5: Performance
	Slide 6: AI Developments Next Steps
	Slide 7: Conventional Tracking Improvements – CTOF Matching
	Slide 8: Plans
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: BACKUPS
	Slide 14: Dedicated ML Banks
	Slide 15: Denoising Model: Graph Neural Networks (GNN)
	Slide 16: GravNet Layers (arxiv:902.07987)
	Slide 17: Model Restrictions
	Slide 18: Improvements

