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AI-Driven “Denoising” Algorithm for CVT Tracking ~ Motivation

• Many seeds (track candidates) share 

clusters of hits.

• Difficult to select the “good” candidate 

amongst a set of candidates that share 

clusters with it.

• Leads to a large number of “fake tracks”  

→ wrong clusters-on-track selection 

(combinatorials),  loss of tracking efficiency, 

increased computation times

• Worsening of track parameters resolution 

due to background hits polluting clusters, 

and resulting in wrong clusters-on-track 

selection

• Need for development of denoising 

algorithm(s)

Seed Multiplicity in CVT Tracking – RGE Data Example
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Denoising Model: Graph Neural Networks (GNN)

• Graph are made of nodes (eg hits) & edges.

• During learning, “message passing” updates 

each node with information from other nodes.

• This is learned (eg what information is passed 

is the output of a small neural network).

•  GNNs can be used in different ways:

• Node classification (denoising)

• Edge classification (track finding)
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Denoising AI Development  

• MC sample with single generated muon track 

(signal hits, order 0) and merged  background 

(order!=0).

• Input variables are:

• Sector, layer, strip

• x, y, z (1 & 2)

• Centroid and seed weights (normalized 

distance to cluster centroid/seed)

• High segmentation in CVT means we cannot 

use fixed size arrays → employ different 

technology to FD (GNNs instead of CNNs).

• Data processing, algorithm, training and 

coatjava inference code is available (see 

github).

Only Sector 1 

https://github.com/rtysonCLAS12/CD_ML_Denoising
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Performance
SVT Layer 1                 SVT Layer 2                 SVT Layer 3

SVT Layer 4                 SVT Layer 5                 SVT Layer 6

BMT Layer 1                 BMT Layer 2                 BMT Layer 3

BMT Layer 4                 BMT Layer 5                 BMT Layer 6
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AI Developments Next Steps

Doing exploratory work on improvements to CVT.

We have preliminary results that look encouraging

There is still a lot to do → expect timescales of a year.

Workforce:

• Mathieu, Pierre, Bhawani will work on improving AI/ML model

• Veronique will work on conventional improvements to tracking

• Tongtong & Veronique will work on coatjava integration and validation



Conventional Tracking Improvements – CTOF Matching
All seeds
• Many seeds (track candidates) share clusters of 

hits
• Difficult to select the “good” candidate amongst 

a set of candidates that share clusters with it
• Seeds are fit using a global method that 

assumes a constant 5-T field solenoidal field → 
using swimming to fit each seed not viable; 
global chi^2 and NDF used to select the seed 
from a set of seeds that share clusters → when 
the “real” seed (MC studies) has missing layer(s) 
in its trajectory, the wrong seed can be selected.

Seeds matched to the CTOF
• Reducing the number of seeds is helpful 

to diminish the number of candidates 
sharing clusters and the overall number 
of seeds passed on to the fitter (faster 
tracking)

• Matching to the CTOF done by reading 
the CTOF hits bank and selected hit 
with OR/AND TDC/ADC hits (only ADC 
hits are displayed in CED).

Selected seeds matched to the CTOF
• Seeds remaining after “best” candidate 

selection amongst a group of seeds that 
share clusters of hits. 

• With CTOF matching, fewer 
selected seeds which have better 
chi^2/NDF

• Reduction of ghost tracks to be 
validated in MC (with background 
merging)
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Plans

• Further improvements in seed selection
• Current algorithm uses sorting algorithms by chi^2/NDF
• Investigating missing hits on track using layer efficiency tables → if a hit on track is 

missing in an efficient layer ➔ flag as potential ghost track

• Investigating using roads for SVT seeding
• Concept:

• Development of a precomputed pattern-matching algorithm (road finder).
• A road = expected strip hits for a track hypothesis.
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Goal: Convert millions of compressed road patterns into an efficient lookup structure.

Process:
1. Load per-paddle .bin.gz files

1. Each file contains bit-packed roads, created by a script 
2. Each road = sequence of (layer, sector, strip) hits created by computing helical tracks trajectories looping 

over, q, p, theta, phi, z, and determining the intersecting surface and nearest strip from geometry 
2. Extract “index keys” (from file created by index-building script)

1. For each element:
bin in phi corresponding to the strip implant end point (360 bins)
key = (phiBin<<16 | sector<<8 | layer) embedded in a long

3. For each paddle, build temporary structure:
Map< key → list of roadIds >
4. Compact into final UBER index:
Map<Integer paddle → Map<Long key → int[] roadIds>>
5. Store full road list in RoadIndex.UberEntry[] roadTable
→ Each entry stores (paddle, bitOffset, nElements)
→ No full decode yet (lazy loading)

UBER index built:
   keys   → road ID lists
   roadTable → bit offsets

For a given CTOF paddle each road (with trajectory landing on 
that paddle) saved in gz file:   
 short   nElements

    nElements:
         long packedStripID  (16-bit encoded sector+layer+strip)

Conventional Tracking – Roads
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Roads required to intersect the CTOF 
→ built-in CTOF-matching



Fast Road Lookup (Event Processing)
Input per event: A set of cluster keys per paddle

Reverse inverted index:
•Instead of iterating roads → check clusters
•We iterate clusters → check road membership
Complexity:
O(clusterKeys + matchedRoads)
No decoding done yet.

Lazy Road Decode + LRU Cache

Steps:
1.Build 64-bit cache key: 
[paddle:16][offsetBytes:32][nElements:16] 
2.Check LinkedHashMap LRU cache (20k entries)
3.If miss:

1. Seek into paddle byte array using bit-skips (offsetBytes)
2. Read (layer, sector, strip) triplets
3. Build CompactRoad
4. Insert into cache

Why lazy decode?
•50M+ possible roads
•Only a few hundred decoded per event
•Saves GBs of RAM

Conventional Tracking – Roads
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Seeding SVT Tracks from Roads

Seed using roads with input: clusters, CTOF paddles, 
paddleBytes (bit packed roads information for a given paddle)  
I. Obtain the list of CTOF paddles with hits in the event
II. Per paddle:
1. Build the same cluster keys used for road indexing
2. findRoad() → best matching UBER entry
3. getRoad() → decode only that road
4. matchRoadToClusters():

1. Match by (sector,layer)
2. Pick closest strip distance per element

5. If ≥ 4 matched clusters → accept as SVT seed

Conventional Tracking – Roads

Seeding CVT Tracks from Roads 

Seed CVT tracks using the conventional seeding 
algorithm (SSA, SLA) for each set of clusters matched to 
a road, including BMT clusters

Each such seed is fitted using the Kalman Filter 
algorithm

➢ In development…
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Validations

o Roads-building binning:
• p → 10 MeV
• Theta, phi → 1 deg.
• z (RGA) → target length / 5 (small z sensitivity for SVT)

o Performance
• Memory footprint
• Reconstruction speed
• Tracking efficiency
• Impact on resolution

Conventional Tracking – Roads

Plans

o Run validations on phase space coverage for roads
o Validate feasibility of incorporation in 

reconstruction stack (performance)
o Validate tracking performance
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BACKUPS
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Dedicated ML Banks
Bankdefs: cvtnn.json

• nT = #reconstructed hits on 
track with order 0 (true hits 
on track)

• nTot = #reconstructed hits on 
tracks

• nG = #generated hits 
belonging to simulated track

• Purity = nT / nTot

• Efficiency = nT / nG

• If purity < efficiency: list of 
HOTs contains fakes               
& # HOTs > generated HOTs
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Denoising Model: Graph Neural Networks (GNN)

• Graph are made of nodes (eg hits) & edges.

• During learning, “message passing” updates 
each node with information from other nodes.

• This is learned (eg what information is passed 
is the output of a small neural network).

•  GNNs can be used in different ways:
• Node classification (denoising)
• Edge classification (track finding)
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GravNet Layers (arxiv:902.07987)

• GravNet offers a “smart” way of grouping 
nodes before message passing (useful due to 
high hit multiplicity).

• A neural network predicts a latent space 
position for each hit

• We group the hits by distance in latent space 
(kNN)

• Message passing is weighted by distance

• A neural network outputs the probability that 
each hit is signal, based on info from the hit 
and neighbours

Note: kNN in many 
dimensions is slow.

In 1D use sorting (fast).

In ND, first sort over 
random dimension, 
select 2*k, then do 

knn

https://arxiv.org/pdf/1902.07987
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Model Restrictions

• Due to number of hits per event, we cannot create 
edges between all hits:
• GravNet reduces impact of this. 
• Further restrict hits to sectors (based on SVT)
• Restrict by φ? Adjacent hits in a layer? Distance 

between neighbour layers?

• I thought that the Deep Java Library in coatjava 
meant we need stick to standard PyTorch:
• Use padding eg define a maximum number of 

hits per event, pad with zeros for the rest of it
• Padded events are not included in message 

passing.
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Improvements

Events with only background, keep?
Events with partial track due to splitting into sectors, keep?
More than 1 track per event
10x more data means ~20h training, we can randomly 
sample from full dataset and train in subsets of data for 
subsets of total number of epochs 

Training Data

Polar coordinates instead of X/Y/Z?
Cluster info?
What variables are ”well” simulated?

Variables

Need 10x more training data
Further restriction in graph formation?
Sort out training data
Sort out variables
Try out different hyperparameters (record efficiency, 
purity, training and inference times) Integration in 
Coatjava

To Do

Decrease learning rate for smoother loss v epochs
Latent space dimension (s=1 for now)
Number of neighbours (k=30)
Message passing space (34)
Number of GravNet layers (16)
Output neural net layout

Hyperparameter
Example code in the github & networks in these slides
Can use similar engine to DC denoising
Needs functionality:
• parse hits bank into arrays
• change order based on output, mask in tracking
• Measure full reconstruction efficiency & resolutions

Coatjava Integration
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