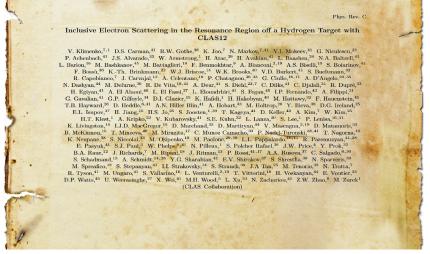
Remarks on RGA inclusive data, older data sets, and models

Gabriel Niculescu
James Madison University

CLAS12 Collaboration Meeting -=online=-

11/18/2025

Introduction


Disclaimer: This is just GN's \$0.02 worth...

- Many people contributed (directly or indirectly) to this talk (and they will hopefully be acknowledged as appropriate).
- ...and they all have done their level best! thanks!
- Therefore, all inaccuracies, miss-statements, controversial, or just plain wrong statements are mine alone!
- That said, we press onward...

As I'm sure many of you are aware...

- CLAS12 continues to be a vibrant, active collaboration
- ...with new (and excellent!) leadership, both at the Hall and User levels
- in 2025 C12 has published a plethora of papers, including this one (no room here, see next page!):

Phys. Rev.C 112 (2025) 2, 025201, Jan 2025

NOTE: As my name appears among those not–quite–in–alphabetic order, I must have contributed (a tiny bit) to this effort.

Introduction (III)

RGA (e, e') was quite an effort/achievement:

- besides statistics (and lots of MC), corrections, dead channels, etc...
- sector-to-sector systematics
- deconvolution (as opposed to bin-by-bin acceptance correction)
- iterations (of the model used to generate MC input)
- ...blueprint on extracting cross-sections out of CLAS12 data.
- so many thanks to the heavy lifters in this project: V.K., K.J., V.M.
- the nominal physics goal: map out nucleon electroexcitation amplitudes up to Q^2 of 10 GeV 2 (and W up to 2.5 GeV)
- However, what I want to touch upon today is this: how do these results stack up compared w/ world data?
- luckily, **we** (as a field), have accumulated 50+ years-worth of (e, e') data!

Motivation:

- There are some (reported) **tensions** between the published RGA inclusive xsect results and the **world data** a/o leading (e, e') models.
- it would be beneficial to characterize these **tensions** and (if needed)
- identify (or attempt to, anyway) the root of these
- ...esp. as some of the world data results stem from the same lab (!)

"THE" REAL Rationale:

- → The PhD student graduated, moved on...
- → Hall & Lab Leadership interested in this.
- ⇒ could have (ahem!) done a (slightly) better comparison job...
- → I am deeply invested in this type of physics
- ⇒ I, (GN), am old enough and foolish enough...

How should we proceed?

Strategy:

- keep RGA data as much as possible as is $((W, Q^2) grid)$. set [1]
- we shall **compare** this data with:
 - Eric Christy's model (Bosted-Christy (BC), resonances, transition to DIS, higher Z targets)
 - CJ model (pdf-based, not expected to have resonances)
 - world data set either from primary sources: papers, PhD theses or, in the case of most SLAC data, the early 1990's re-analysis (Whitlow). set [2]
- we shall **NOT compare** this data (for now!) with:
 - not (yet!) published inclusive results (E12–10–002, Marathon?)
 - Al-based models (coming soon!)

To move forward w/ this...

We shall need:

Introduction

- ✓ get a recent (and working!) version of the CJ code (includes pdf → xsect capabilities)

$$R = \frac{\sigma_L}{\sigma_T}$$
 ... namely R1998)

- ✓ select subset of world data that is in the RGA range*
- select only (4 now!) the data for which cross-sections were originally published (so no F_2 only points). set [2]
- ✓ evaluate CJ & BC models for both sets [1] and [2]
- ✓ evaluate the Jacobian needed to get from

$$\frac{d^2\sigma}{dE\ d\Omega} \ o \ \frac{d^2\sigma}{dW\ dQ^2}$$

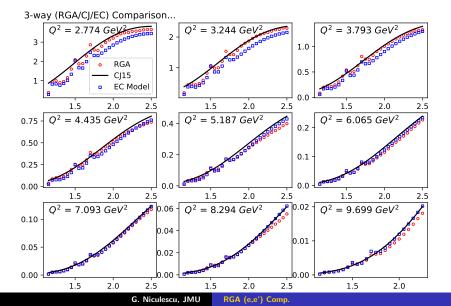
(once the above are on hand we can talk about) Tactics:

We could (apologies for the text- Lots of pictures follow!):

- compare at the cross-section level...
 - + keeps RGA result exactly as is
 - very little world xsect data that exactly matches RGA kinematics
 - expanding matching criteria leads to unavoidable model dependencies
 - excludes a lot (100x??) of the world data (including CLAS results!)
 - was already done in the paper; deemed insufficient! (otherwise we would not be having this discussion!)
 - compare at the **structure function** (F_2) level (**IN suggestion!**)
 - requires extracting F_2 from the RGA data (which I've done $\mathbf{\Sigma}$)
 - introduces model dependency at least via R (possibly also through the evolution strategy if grid matching)
 - + allows for the widest possible comparison w/ models/published results.
 - + including CLAS6 data!
 - + Substantially easier to carry out ([1]: \sim 250 data points vs [2]: 4000+)

We'll try to show a little of both!

Cross-section level comparison



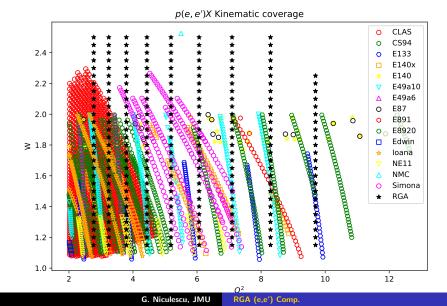
First steps (compare w/ leading models):

- evaluate CJ and BC (aka EC) models for all the [1] kin. points.
- **NOTE 1:** CJ not expected to work at low Q^2 a/o W^2 below 3-ish! Except, possibly, in a q-h Duality way.
- NOTE 2: upper Q² limit for BC validity not well-defined.

Introduction Strategy & Tactics Comparison Results Summary

Cross-section comparison

Cross-section level comparison (II)


Further steps:

- to compare w/ world data we need to either...
 - find points that very closely match one of our Q^2-W grid points (which was done in the paper - very few points have this!)
 - do matching: using a model prediction to evolve a point from one kin. setting to a different (but close-ish!) kinematic setting
- Here is our approach for the latter:
 - for each point in [1] match Q^2 [2] to within some fraction of [1] (say 20%)
 - match W between [1] and [2] to within some value (say 10 MeV)
 - #'s can be varied for a looser/tighter match
 - Note: a point in [1] might have more (several!) world data point matches.
 - use the ratio of BC (or CJ!) model values in [1] and [2] to extrapolate/evolve/move the [2] point to the [1] grid.
 - (if needed) apply [1] jacobian to the extrapolated point
 - keep only world data that comes within some fraction (say 50%) of the RGA result for plotting/comparison.

Let's see how this goes!

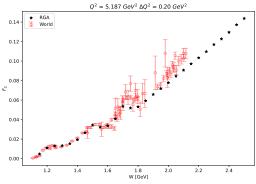
Introduction Strategy & Tactics Comparison Results Summary

Starting point. Q^2 -W coverage

Cross-section comparison: RGA-world data

Pushing the comparison further

As seen on the previous slides...


- very tight kin. matching yields very few world data points to compare to.
- ullet a more productive approach would be to go for F_2 -level comparison.
- the only ingredient needed to turn RGA cross—section data into F₂ is the aforementioned R (R1998)*
- IN: to minimize model dependency, match only Q^2 s, leave W as is
- **IN:** yes, the Ws would not match, but one gets complete* scans!
- ... therefore is straighfwd to extract and compare (by eye 2day, numerical
 if need be) the two pdfs. Note: Here p in pdf: probability, not parton!!
- ... completely removes model dependency, leaves only reliance on R.

Let's see how this goes!

F_2 comparison: RGA-world data

F_2 comparison: RGA-world data (II)

Observations

Distributions seen on the previous slides...

- no scaling. Just matching within the quoted Q^2 ranges.
- RGA results compare well/match the WD in the resonance region
- **RGA** error bars ($\sim 7 \%$) are comparable w/ the **WD** uncertainties
- there is a possibility that **RGA** & **WD** slightly diverge toward higher W
- So let's apply scaling (Q^2 only) and see where we stand.

F_2 comparison: RGA-world data (V-ish?)

Quo Vadis?

In summary:

- RGA (e, e') result adds \sim 250 points to the **WD** data set, extending coverage to $Q^2 = 10 \text{ GeV}^2$.
- we carried out a meaningful, in-depth comparison of RGA results w/ models & prev. data

I hope I convinced you that:

- cross-section comparison: CJ15 seems to favor RGA data over BC model* at lower Q^2 , switches at higher values...
- F_2 comp.: RGA compares well to WD at all Q^2 s (1–3 σ)
- plans underway to use RGA xsect results to update CJ pdfs!
- higher W trend is worth further investigation (as a couple of 1-3% effects will make a substantial difference).
- THANK YOU!