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Where Does the Proton Spin Come From?
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Proton total spin ෠𝑺 = ℏ/𝟐

• Total proton spin 
1

2
= 𝑞𝑢𝑎𝑟𝑘 𝑠𝑝𝑖𝑛 + 𝑔𝑙𝑢𝑜𝑛 𝑠𝑝𝑖𝑛 + 𝑞𝑢𝑎𝑟𝑘 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 + 𝑔𝑙𝑢𝑜𝑛 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

• Quark spin contribution depends on polarized parton distribution functions (PDFs)

• Polarized PDF: Δ𝑞𝑖 𝑥 = 𝑞𝑖
↑ 𝑥 − 𝑞𝑖

↓ 𝑥

• 𝑔1 𝑥 ≈
1

2
Σ𝑖𝑒𝑖
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2
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Δ𝑠 𝑥 + ⋯

• Measure structure functions through polarized electron-proton scattering



Polarized 𝑒𝑝 Scattering
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• Protons are polarized either parallel or antiparallel to the beam electrons’ spins

• Deep inelastic scattering (DIS): electrons scatter off individual quarks (𝑄2 > 1 GeV2,  𝑊 > 2 GeV)

• Scattering conserves spin (angular momentum), so any asymmetry between 𝑛± is related to spin structure

𝐴|| 𝑥, 𝑄2 =
𝑛− − 𝑛+

𝑛− + 𝑛+
= 𝐷 𝐴1 𝑥, 𝑄2 + 𝜂𝐴2 𝑥, 𝑄2

• With 𝐴1, 𝐴2 = virtual photon asymmetries 

𝐴1 𝑥, 𝑄2 ∝
𝑔1 𝑥, 𝑄2

𝐹1 𝑥, 𝑄2
≈

Σ𝑖𝑒𝑖
2Δ𝑞𝑖 𝑥, 𝑄2

Σ𝑖𝑒𝑖
2𝑞𝑖 𝑥, 𝑄2



• Ran from June 2022 to March 2023 for 80 PAC days (120 
scheduled)

• RG-C data divided into five run periods: 

– Summer 2022: Inbending (Negative Solenoid and Torus) 

• Runs 16128 – 16772 

– Fall 2022: Inbending (Negative Solenoid and Torus)

• Runs 16859 – 17183 

– Fall 2022: Inbending (Positive Solenoid, Negative Torus) 

• Runs 17188 – 17408 

– Spring 2023: Inbending (Negative Solenoid and Torus)

• Runs 17482 – 17768 

– Spring 2023: Outbending (Negative Solenoid, Positive Torus)

• Runs 17769 – 17811 

• Used several target types:

– Frozen ammonia targets: NH3 for protons, ND3 for deuterons

– Carbon foil targets

– Polyethylene (and deuterated polyethylene) foil targets

– Empty targets (both filled with liquid helium and completely empty)

• Generate polarized protons (deuterons) with RG-C polarized target

Run Group C Experimental Setup
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Diagram of CLAS12 Detector, Ziegler et. al.
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Ammonia crystals unexposed to beam (left), crystals after beam 

exposure (right). Purple color from paramagnetic centers.

• Generate polarized protons (deuterons) with RG-C polarized target

• Ammonia crystals, polarized via dynamic nuclear polarization (DNP)

• Cool to ~1 K in a 5 T field generated by solenoid, where free 

electrons almost completely polarize

• Using microwaves with a frequency of 𝜈𝐸𝑆𝑅 ± 𝜈𝑁𝑀𝑅 (~140 GHz), 

transfer electron polarization to the protons (or deuterons) 

• ~90% for protons, ~40% for deuterons

Run Group C Experimental Setup
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• Inclusive electron scattering: 𝑒𝑝 → 𝑒𝑋,  𝑒𝑑 → 𝑒𝑋

• Forward Detector: DC, ECAL, HTCC

• Electron Event Builder PID:

– Negative track in the DC

– 𝐸𝑃𝐶𝐴𝐿 > 60 MeV

– Photoelectrons in HTCC 𝑛𝑝ℎ𝑒 > 2

• Deep inelastic kinematic cuts:

– 𝑄2 > 1 GeV2, 𝑊 > 2 GeV, 

– 𝐸′ > 2.6 GeV (minimize radiative effects)

• Fiducial cuts (work in progress):

– Summer: −9 cm < 𝑉𝑍 < 1 cm, 𝑉𝑋,𝑌 < 2 cm 

– Fall & Spring: −7.5 cm < 𝑉𝑍 < 2.5 cm, 𝑉𝑋,𝑌 < 2 cm 

– 5° < 𝜃 < 40°, 𝜒𝑃𝐼𝐷
2 < 3

– Region-dependent drift chamber edge cuts: 

• EdgeR1 > 4 cm, EdgeR2 > 5 cm, EdgeR3 > 8 cm

– Working on ECAL fiducial cuts based on L-strips

• PCAL Lv, Lw > 9 cm (based on RG-A fiducial studies)

• QADB cuts for all run periods
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• Inclusive electron scattering: 𝑒𝑝 → 𝑒𝑋,  𝑒𝑑 → 𝑒𝑋

• Forward Detector: DC, ECAL, HTCC

• Electron Event Builder PID:

– Negative track in the DC

– 𝐸𝑃𝐶𝐴𝐿 > 60 MeV

– Photoelectrons in HTCC 𝑛𝑝ℎ𝑒 > 2

• Deep inelastic kinematic cuts:

– 𝑄2 > 1 GeV2, 𝑊 > 2 GeV, 

– 𝐸′ > 2.6 GeV (minimize radiative effects)

• Fiducial cuts (work in progress):

– Summer: −9 cm < 𝑉𝑍 < 1 cm, 𝑉𝑋,𝑌 < 2 cm 

– Fall & Spring: −7.5 cm < 𝑉𝑍 < 2.5 cm, 𝑉𝑋,𝑌 < 2 cm 

– 5° < 𝜃 < 40°, 𝜒𝑃𝐼𝐷
2 < 3

– Region-dependent drift chamber edge cuts: 

• EdgeR1 > 4 cm, EdgeR2 > 5 cm, EdgeR3 > 8 cm

– Working on ECAL fiducial cuts based on L-strips

• PCAL Lv, Lw > 9 cm (based on RG-A fiducial studies)

• QADB cuts for all run periods

Electron PID Cuts
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Electron PID Cuts
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S1 Lv > 9 cm

Sampling Fraction

𝑆𝐹 = (𝐸𝑃𝐶𝐴𝐿 + 𝐸𝐸𝐶𝐼𝑁 + 𝐸𝐸𝑂𝑈𝑇)/𝑃



• Unpolarized background: N, Al, He nuclei in target/bath

• Reduces measured 𝐴||, and cannot be removed with vertex/kinematic cuts

• Quantified using a dilution factor 𝐷𝐹

𝐷𝐹 =
𝑌𝐻

𝑌𝐴𝑚𝑚𝑜𝑛𝑖𝑎
=

3𝜎𝐻ℓ𝐻𝜌𝐻

3𝜎𝐻 + 𝜎𝑁 ℓ𝐴𝜌𝐴 + 𝜎𝐻𝑒ℓ𝐻𝑒𝜌𝐻𝑒 + 𝜎𝐴𝑙ℓ𝐴𝑙𝜌𝐴𝑙

• Imperfect polarization of beam electrons and target particles: 𝑃𝑏𝑃𝑡

• Dividing 𝐴|| by 𝐷𝐹 and 𝑃𝑏𝑃𝑡 accounts for the background

𝐴||,𝑝ℎ𝑦𝑠 =
𝐴||,𝑟𝑎𝑤

𝐷𝐹𝑃𝑏𝑃𝑡
∝ 𝐴1
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Unpolarized Background and Beam-Target Polarization



Unpolarized Background and Beam-Target Polarization

• Unpolarized background: N, Al, He nuclei in target/bath

• Reduces measured 𝐴||, and cannot be removed with vertex/kinematic cuts

• Quantified using a dilution factor 𝐷𝐹

𝐷𝐹 =
𝑌𝐻

𝑌𝐴𝑚𝑚𝑜𝑛𝑖𝑎
=

3𝜎𝐻ℓ𝐻𝜌𝐻

3𝜎𝐻 + 𝜎𝑁 ℓ𝐴𝜌𝐴 + 𝜎𝐻𝑒ℓ𝐻𝑒𝜌𝐻𝑒 + 𝜎𝐴𝑙ℓ𝐴𝑙𝜌𝐴𝑙

• Imperfect polarization of beam electrons and target particles: 𝑃𝑏𝑃𝑡

• Dividing 𝐴|| by 𝐷𝐹 and 𝑃𝑏𝑃𝑡 accounts for the background

𝐴||,𝑝ℎ𝑦𝑠 =
𝐴||,𝑟𝑎𝑤

𝐷𝐹𝑃𝑏𝑃𝑡
∝ 𝐴1
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Calculating the Dilution Factor
• Advantageous to write 𝐷𝐹 in terms of scattering counts from background targets instead of cross sections

11

𝐶𝑖 , 𝐷𝑖 ∝ ℓ𝑖 , 𝜌𝑖 of target materials

• Counts from the targets are functions of the cross sections

• Using information from all targets, write the yields in terms 

of scattering counts

• 𝑛𝐴 𝜎𝐴𝑙, 𝜎𝐻𝑒 , 𝜎𝐶 , 𝜎𝐻 ,  where 
7

6
𝜎𝐶 ≈ 𝜎𝑁 

• 𝑛𝑀𝑇 𝜎𝐴𝑙 , 𝜎𝐻𝑒 ,    𝑛𝐶 𝜎𝐴𝑙 , 𝜎𝐻𝑒 , 𝜎𝐶

• 𝑛𝐶𝐻 𝜎𝐴𝑙 , 𝜎𝐻𝑒 , 𝜎𝐶 , 𝜎𝐻 ,    𝑛𝐹 𝜎𝐴𝑙

• Solving for the yields and rewriting the 𝐷𝐹:

𝐷𝐹 𝑥, 𝑄2 = 𝑃𝐹

𝐶1𝑛𝐶 + 𝐶2𝑛𝑀𝑇 + 𝐶3𝑛𝐶𝐻 + 𝐶4𝑛𝐹

𝐶5𝑛𝐴

• Packing fraction 𝑃𝐹 is the target volume fraction occupied by the ammonia crystals

𝑃𝐹 𝑥, 𝑄2 =
𝐷1 𝑛𝐴 − 𝑛𝑀𝑇

𝐷2𝑛𝑀𝑇 + 𝐷3𝑛𝐶 + 𝐷4𝑛𝐶𝐻 + 𝐷5𝑛𝐹
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Calculating the Dilution Factor
• Two methods are used to calculate the dilution factor: a data-driven method and a 

model of the dilution factor

• Data-driven method:

– Measure 𝑛𝐴 𝑛𝑀𝑇 𝑛𝐶 𝑛𝐶𝐻 𝑛𝐹 from the data

– Use these values to calculate a value of 𝑃𝐹 for each 𝑥, 𝑄2 bin

– Calculate a weighted average of all 𝑃𝐹

– Use this 𝑃𝐹,𝑎𝑣𝑔 as an input to calculate 𝐷𝐹 for each 𝑥, 𝑄2 bin

– Requires a radiation length correction to empty 𝑛𝑀𝑇 and foil 𝑛𝐹 counts 

(haven’t found a suitable model yet)

• Modeled dilution factor:

– From modeled structure functions, “build” each target and simulate the 

counts 𝑛𝐴 𝑛𝑀𝑇 𝑛𝐶 𝑛𝐶𝐻 𝑛𝐹 coming from the target

– Accounts for EMC effect, fermi motion, and radiative corrections to be built-in 

to the model

– Helps estimate 𝐷𝐹 in low-statistics regions

– Model is tuned to fit experimentally measured 𝐷𝐹 and 𝑃𝐹
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𝑃𝐹,𝐴𝑣𝑔 = 0.5099 ± 0.003



Preliminary Results

• Calculated preliminary 𝐷𝐹 for the RGC dataset

• Datasets are broken up into different “epochs” that 

have different packing fractions

• 𝐷𝐹 binned in 𝑥 for each epoch

• Once 𝐷𝐹 are calculated, use them to get 𝑃𝑏𝑃𝑡
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Summer 2022 𝐷𝐹 Data Fall 2022 𝐷𝐹 Data

XX

𝐷
𝐹

𝐷
𝐹

Epoch 2: Runs 16137 – 16178

Epoch 3: Runs 16211 – 16260 

Epoch 4: Runs 16318 – 16357 

Epoch 5: Runs 16658 – 16674 

Epoch 6: Runs 16675 – 16695 

Epoch 7: Runs 16709 – 16738

Epoch 8: Runs 16742 – 16752 

Epoch 9: Runs 16753 – 16766 

Epoch 10: Runs 16767 – 16772 

Summer 2022 

Runs

Fall 2022 

Runs
Spring 2023 

Runs

Epoch 11: Runs 16983 – 16993 

Epoch 12: Runs 16695 – 17032  

Epoch 13: Runs 17067 – 17102  

Epoch 14: Runs 17144 – 17161 

Epoch 15: Runs 17162 – 17169 

Epoch 16: Runs 17188 – 17214 

Epoch 17: Runs 17215 – 17225 

Epoch 18: Runs 17353 – 17368 

Epoch 19: Runs 17371 – 17382 

Epoch 20: Runs 17575 – 17597 

Epoch 21: Runs 17598 – 17611 

Epoch 22: Runs 17720 – 17741

Epoch 23: Runs 17748 – 17762 

Epoch 24: Runs 17769 – 17778 

(Epoch 24 is outbending)

Spring 2023 𝐷𝐹 Data

X

𝐷
𝐹



Preliminary Results

• Calculated preliminary 𝐷𝐹 for the RGC dataset

• Datasets are broken up into different “epochs” that 

have different packing fractions

• 𝐷𝐹 binned in 𝑥 for each epoch

• Once 𝐷𝐹 are calculated, use them to get 𝑃𝑏𝑃𝑡
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Summer 2022 𝐷𝐹 Data Fall 2022 𝐷𝐹 Data Spring 2023 𝐷𝐹 Data

XXX

𝐷
𝐹

𝐷
𝐹

𝐷
𝐹

Weighted Average 𝑷𝑭 Per Run 

Period:

Summer 2022 𝑃𝐹 = 0.5280 ± 0.0001
Fall 2022 𝑃𝐹 = 0.5045 ± 0.0001
Spring 2023 𝑃𝐹 = 0.5149 ± 0.0001



Beam-Target Polarization Calculations

𝐴||,𝑝ℎ𝑦𝑠 =
𝐴||,𝑟𝑎𝑤

𝐷𝐹𝑃𝑏𝑃𝑡
 ⇒  𝑃𝑏𝑃𝑡 =

𝐴||,𝑟𝑎𝑤

𝐷𝐹𝐴||,𝑝ℎ𝑦𝑠

• Use a model to calculate 𝐴||,𝑝ℎ𝑦𝑠

• For DIS 𝑃𝑏𝑃𝑡, calculated over 𝑥, 𝑄2 bins using 𝐴𝑡ℎ = 𝐷 𝐴1 + 𝜂𝐴2 , with values 

of 𝐷, 𝜂, 𝐴1, 𝐴2 come from S. Kuhn ‘s model

• Model is a parameterized fit to existing world data

• Calculated through the maximum likelihood method:

𝑃𝑏𝑃𝑡 =
σ𝑥,𝑄2 𝑏𝑖𝑛𝑠 𝐷𝐹,𝑖𝐴𝑡ℎ,𝑖 𝑛𝑖

− − 𝑛𝑖
+

σ𝑥,𝑄2 𝑏𝑖𝑛𝑠 𝐷𝐹,𝑖
2 𝐴𝑡ℎ,𝑖

2 𝑛𝑖
− + 𝑛𝑖

+

• Values of 𝑃𝑏𝑃𝑡 were also calculated for RGC data using exclusive elastic 𝑒𝑝 →
𝑒′𝑝′ scattering (Noemie Pilleux)

• Elastic asymmetry parameterized by Arrington et. al.

• Normalize DIS 𝑃𝑏𝑃𝑡 to elastic 𝑃𝑏𝑃𝑡 using 𝑓~𝑃𝑏𝑃𝑡 𝑒𝑙𝑎𝑠𝑡𝑖𝑐
/𝑃𝑏𝑃𝑡𝐷𝐼𝑆,𝑎𝑣𝑔

• However, since there are corrections required for both DIS and Elastic 

(polarized nitrogen, 𝐷𝐹 normalization, etc.), the results shown for 𝐴1,𝑝 will use 

just the DIS results from this slide
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Blue Dots = DIS 𝑃𝑏𝑃𝑡

Red Lines = Elastic 𝑃𝑏𝑃𝑡



Preliminary Results

• To calculate A1,p, rearrange 𝐴||,𝑝ℎ𝑦𝑠 = 𝐷 𝐴1 + 𝜂𝐴2  

• 𝐴1 = 𝐴||,𝑝ℎ𝑦𝑠/𝐷 −𝜂𝐴2, with 𝐷, 𝜂, 𝐴2 from S. Kuhn’s model

• Values of 𝜂, 𝐴2 are small for DIS kinematics, so smaller 

effects from model

• Spring 2023 data excludes outbending runs

• Data fluctuates around model values of 𝐴1,𝑝 

• Currently, we don’t have data-driven 𝐴1,𝑑 results due to 

issues with calculating the ND3 𝐷𝐹
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Blue Dots = x-binned data

Red Line = x-binned 𝐴1,𝑝 model
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• Values of 𝜂, 𝐴2 are small for DIS kinematics, so smaller 

effects from model

• Spring 2023 data excludes outbending runs

• Data fluctuates around model values of 𝐴1,𝑝 

• Currently, we don’t have data-driven 𝐴1,𝑑 results due to 

issues with calculating the ND3 𝐷𝐹
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Work Left To Do

• Incorporate radiation length corrections to 𝑛𝑀𝑇 , 𝑛𝐹 counts

• Correct 𝑃𝑏𝑃𝑡 for polarized 14N in target

• Finalize the 𝐷𝐹 model-driven approach

• Finalize ECAL fiducial cuts and implement sampling 

fraction (SF) vs. momentum cuts

• Any Questions? 
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Backup Slides
• DC and ECAL fiducial cuts

• Thermal expansion corrections to targets

• All 𝐷𝐹 and 𝑃𝐹 for NH3 targets across all 𝑥, 𝑄2 bins

• All 𝐷𝐹 and 𝑃𝐹 for ND3 targets across all 𝑥, 𝑄2 bins
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Determining Cuts For DC
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Cuts based on 

where 𝜒2/𝑁𝐷𝐹 

is unstable
𝜋− Tracks 

in Region 3

𝜋− Tracks 

in Region 3

• The DC fiducial cuts based on average 𝜒𝑡𝑟𝑎𝑐𝑘
2 /𝑁𝐷𝐹 vs. edge variable of track

• Cuts selected qualitatively based on where average 𝜒2 rises relative to the 

rest of the distribution

• Analyzed separately for inbending and outbending data using 𝜋+, 𝜋−

• Tracks binned in polar scattering angle 𝜃, momentum 𝑃

• Iterative procedure for making cuts:

1. First, make cuts for Region 3 using inbending data and cuts for Region 1 using 

outbending data

2. After Region 1 and 3 cuts are applied, look at Region 2 and make cuts for 

inbending and outbending

• Checked for each sector in each region

• No momentum, 𝜃-dependent cuts

• Vertex cuts applied

– Summer 2022: −9 cm ≤ 𝑉𝑍 ≤ 1 cm, 𝑉𝑋,𝑌 < 2 cm

– Fall 2022 & Spring 2023: −7.5 cm ≤ 𝑉𝑍 ≤ 2.5 cm, 𝑉𝑋,𝑌 < 2 cm



Determining Cuts For DC

• The DC fiducial cuts based on average 𝜒𝑡𝑟𝑎𝑐𝑘
2 /𝑁𝐷𝐹 vs. edge variable of track

• Cuts selected qualitatively based on where average 𝜒2 rises relative to the 

rest of the distribution

• Analyzed separately for inbending and outbending data using 𝜋+, 𝜋−

• Tracks binned in polar scattering angle 𝜃, momentum 𝑃

• Iterative procedure for making cuts:

1. First, make cuts for Region 3 using inbending data and cuts for Region 1 using 

outbending data

2. After Region 1 and 3 cuts are applied, look at Region 2 and make cuts for 

inbending and outbending

• Checked for each sector in each region

• No momentum, 𝜃-dependent cuts

• Vertex cuts applied

– Summer 2022: −9 cm ≤ 𝑉𝑍 ≤ 1 cm, 𝑉𝑋,𝑌 < 2 cm

– Fall 2022 & Spring 2023: −7.5 cm ≤ 𝑉𝑍 ≤ 2.5 cm, 𝑉𝑋,𝑌 < 2 cm
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• ECAL fiducial cuts are based on the sampling fraction: energy deposited by a particle in the calorimeter

• Sampling fraction 𝑺𝑭 = (𝑬𝑷𝑪𝑨𝑳 + 𝑬𝑬𝑪𝑰𝑵 + 𝑬𝑶𝑼𝑻)/𝑷, where 𝐸𝑖 = energy deposited in each region of ECAL and 𝑃 = momentum

• Sampling fraction is a key quantity in electron PID, since electrons have a distinguishable energy profile (𝑆𝐹 ≈ 24%)

• Distinguishes electrons from minimally ionizing particles (MIPs), like 𝜋− or 𝜋+

• Goals of ECAL fiducial cut:

1. Make an “edge” cut on each region of ECAL based on where SF efficiency is lost 

– Close to the edge, the entire EM shower may not be contained, reducing SF

– If SF is too low, it’s more difficult to distinguish electrons from MIPs

2. Identify inefficient regions of ECAL as well as dead PMT channels 

– Make sure that inefficient regions are identified and removed

– Check that all removed channels are cut from the Monte Carlo
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ECAL Fiducial Cuts

Where does SF dip 

too far?



• For now, I’m using the RG-A “loose” fiducial cuts for electrons in the PCAL: 

Lw, Lv > 9 cm

• More analysis is necessary for unstable SF in sector 1

• Trigger electron data only

– My vertex cuts: 𝑉𝑥,𝑦 < 2 cm (all data sets), -8 cm < 𝑉𝑍 < 2 cm for Summer 2022, 

-10 cm < 𝑉𝑍 < 0 cm for Fall 2022 and Spring 2023 (needs to be updated)

– My drift chamber fiducial cuts: EdgeR1 > 4 cm, EdgeR2 > 5 cm, EdgeR3 > 8 cm

– Electron momentum > 2.6 GeV/c
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ECAL Fiducial Cuts

Where does SF dip 

too far?

• ECAL fiducial cuts are based on the sampling fraction: energy deposited by a particle in the calorimeter

• Sampling fraction 𝑺𝑭 = (𝑬𝑷𝑪𝑨𝑳 + 𝑬𝑬𝑪𝑰𝑵 + 𝑬𝑶𝑼𝑻)/𝑷, where 𝐸𝑖 = energy deposited in each region of ECAL and 𝑃 = momentum

• Sampling fraction is a key quantity in electron PID, since electrons have a distinguishable energy profile (𝑆𝐹 ≈ 24%)

• Distinguishes electrons from minimally ionizing particles (MIPs), like 𝜋− or 𝜋+
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Summer 2022 Data (Trigger 𝒆− Tracks)

Requires 

investigation
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Summer 2022 Data (Trigger 𝒆− Tracks)

S1 Lv > 9 cm S2 Lv > 9 cm S2 Lv > 9 cm

S4 Lv > 9 cm S5 Lv > 13.5 cm S6 Lv > 9 cm

RG-A “Loose” Electron 

Fiducial Cuts

Requires 

investigation
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Summer 2022 Data (Trigger 𝒆− Tracks)

Requires 

investigation
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Summer 2022 Data (Trigger 𝒆− Tracks)

S1 Lw > 9 cm S2 Lw > 9 cm S2 Lw > 9 cm

S4 Lw > 9 cm S5 Lw > 9 cm S6 Lw > 9 cm

RG-A “Loose” Electron 

Fiducial Cuts

Requires 

investigation



Thermal Contraction of Targets
• Studying the impact of thermal contraction of the target cells 

on the dilution factor

• Carbon, CH2, CD2 targets’ geometry measured at room 

temperature, cooled to ~1K, so there’s some contraction of 

target length

• Modulate the sizes of the targets as follows:

– ℓ𝐶 ∗ (1 − 𝑑𝐿𝐶/𝐿𝐶), with 𝑑𝐿𝐶/𝐿𝐶  = 0.5% 

– ℓ𝐶𝐻 ∗ (1 − 𝑑𝐿𝐶𝐻/𝐿𝐶𝐻), with 𝑑𝐿𝐶𝐻/𝐿𝐶𝐻 = 2.1% 

– ℓ𝐶𝐷 ∗ (1 − 𝑑𝐿𝐶𝐻/𝐿𝐶𝐻)

– 𝐿 ∗ (1 − 0.018) (for Teflon contraction, 1.8%)

– 𝜌𝐶/ 1 − 𝑑𝐿𝐶𝐻/𝐿𝐶𝐻
3

– 𝜌𝐶𝐻 / 1 − 𝑑𝐿𝐶𝐻/𝐿𝐶𝐻
3

–  𝜌𝐶𝐷/ 1 − 𝑑𝐿𝐶𝐻/𝐿𝐶𝐻
3

– 𝜌𝐴, 𝜌𝐷 are unchanged
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Summer 2022 𝐷𝐹
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Summer 2022 𝑃𝐹



34

Fall 2022 𝐷𝐹
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Fall 2022 𝑃𝐹
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Spring 2023 𝐷𝐹
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Spring 2023 𝑃𝐹
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