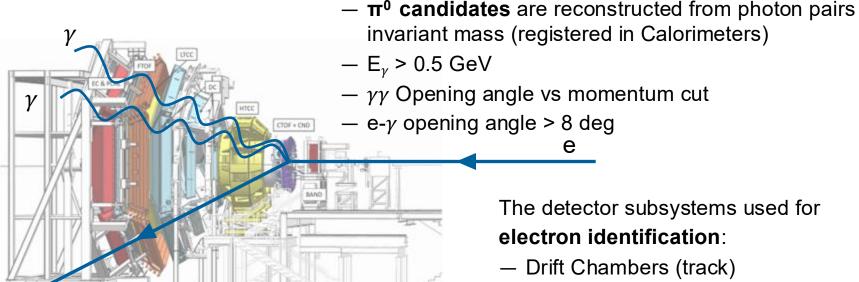


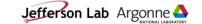
MOTIVATION

- Neutral pion Semi-Inclusive Deep Inelastic Scattering Multiplicities measure the probability of producing a hadron (π⁰) per DIS event
- Multiplicity measurements uniquely link hadronization with the proton's internal transverse motion, advancing both FF determinations and our 3D understanding of proton structure
- The z dependence constrains fragmentation functions (FFs): how colored partons turn into color-neutral hadrons
- The P_T^2 dependence directly probes the unpolarized **TMD PDFs** revealing the proton's intrinsic transverse momentum dynamics
- It also allows to study isospin invariance as the neutral pion fragmentation function is thought to be dependent on the charged pion fragmentation functions

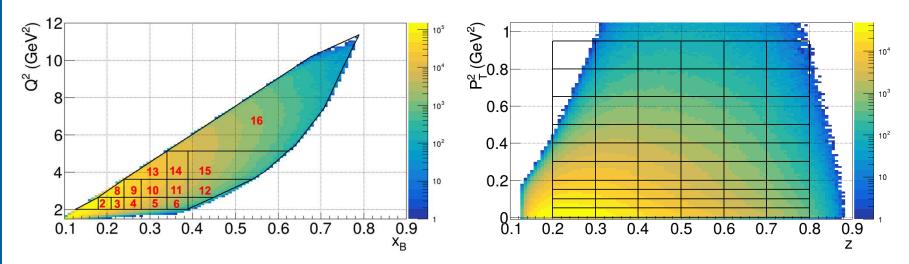

$$\frac{d^{2}M_{h}}{dz\,dP_{T}^{2}}(x_{B},Q^{2},z,P_{T}^{2}) = \frac{\int_{0}^{2\pi} d\phi_{h} \, \frac{d\sigma^{SIDIS}}{dx\,dQ^{2}\,dz\,dP_{T}^{2}\,d\phi_{h}}}{\frac{d\sigma^{DIS}}{dx\,dQ^{2}}}$$

CLAS12

Selection of the ep \rightarrow e $\pi^0 X$ reaction with Forward Detector

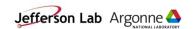


10.6 GeV electron beam, LH₂ 5-cm long hydrogen target


The detector subsystems used for

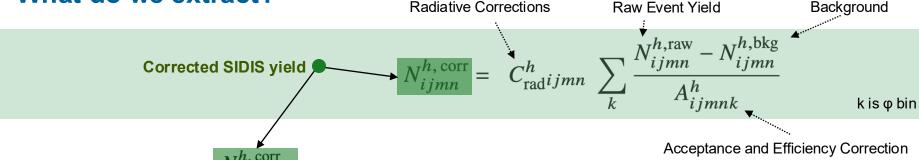
- Calorimeters (EM shower)
- Time of Flight (PID)
- Cherenkov counters (PID)

KINEMATICS AND BINNING


- Large CLAS12 acceptance together with large statistics allow for multidimensional binning
- Semi-Inclusive DIS events selected with following kinematic cuts:

•
$$Q^2 > 2 \text{ GeV}^2$$

•
$$x_F > 0$$
 [$x_F = 2P_{h,L}/\sqrt{s}$] : current fragmentation region


•
$$M_x > 1.5 \text{ GeV}$$

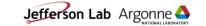
MULTIPLICITY

What do we extract? **Radiative Corrections** Raw Event Yield

Radiative Corrections

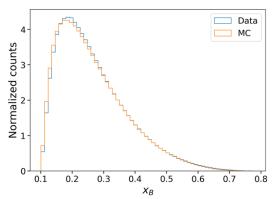
 $(i, j, m, n) \equiv (x_B \text{-bin}, Q^2 \text{-bin}, z \text{-bin}, P_T^2 \text{-bin})$

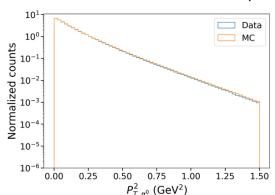
Corrected DIS yield

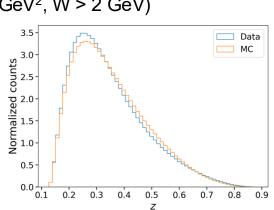

Electron-side efficiencies partially cancel out in the ratio

Acceptance and Efficiency Correction

Raw Event Yield


 $z-P_T^2$ bin size



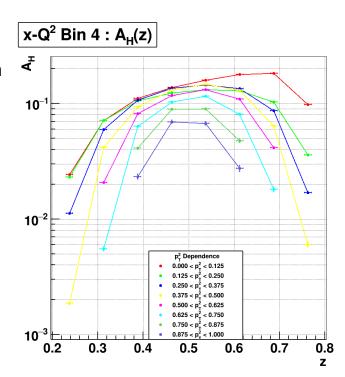

MONTE CARLO

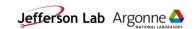
Event Generator used for the Acceptance

- CLASDIS-EG built on LEPTO
- Lund string model as in PYTHIA/JETSET
- LO electroweak DIS (arbitrary lepton polarization); $O(\alpha)$ matrix elements for boson—gluon fusion and gluon radiation; higher-order QCD via parton showers
- QED radiation is not included in the current MC sample
- Hadronization parameters tuned to CLAS12 semi-inclusive data (Q² > 1 GeV², W > 2 GeV)

Normalized counts

 Q^2 (GeV²)

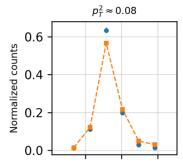

Data

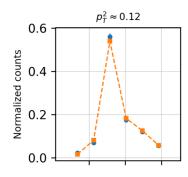

10

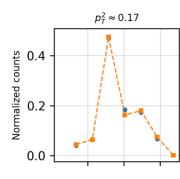
ACCEPTANCE AND EFFICIENCY CORRECTION

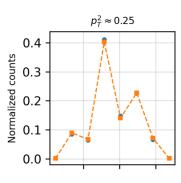
Deconvolution

- Method: bin-by-bin (efficiency) 5D(x_B , Q², z, P_T^2 , φ_h) correction
- Per-bin efficiency: $\varepsilon_{\rm i} = \frac{N_{\rm rec,i}}{N_{\rm gen,i}}$ (reconstructed / generated)
- Deconvolved yield: $y_i = \varepsilon_i \cdot x_i$, where x_i is the measured yield
- Limitation: does not track bin migrations (i -> j); performance depends on generator and detector-simulation accuracy
- Next steps: accumulate more MC to enable matrix-based multidimensional unfolding of migrations

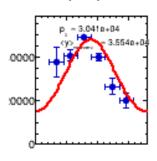

Φ DEPENDENCE

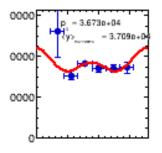

Data and Simulation φ_h spectra

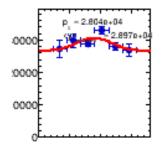

Spectra normalized to the unit area

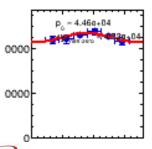

- **Simulation**
 - Data

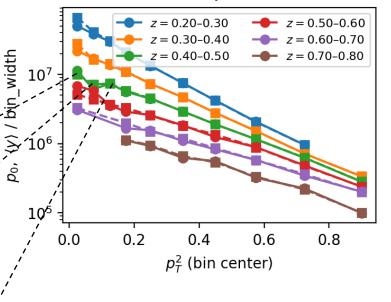




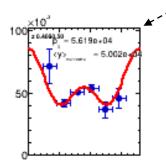


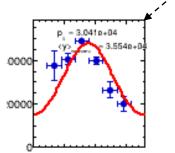


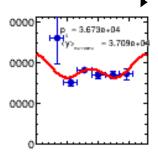

Acceptance corrected φ spectra

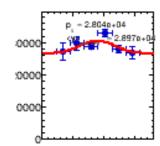

Φ DEPENDENCE

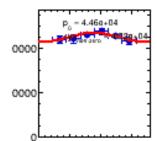
Data and Simulation ϕ_h spectra

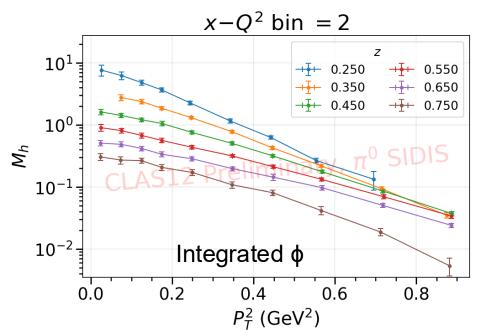

 Fits can change the sign and cause structures in Mh

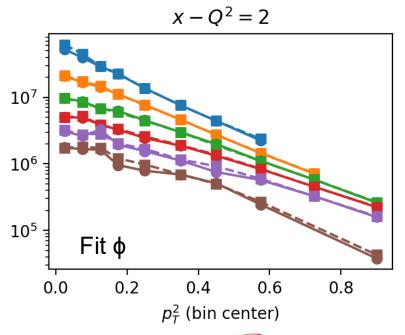

 Greg's Al photo ID may help with coverage and statistics


If nothing helps, I will drop somé data points




 $x - Q^2 = 1$

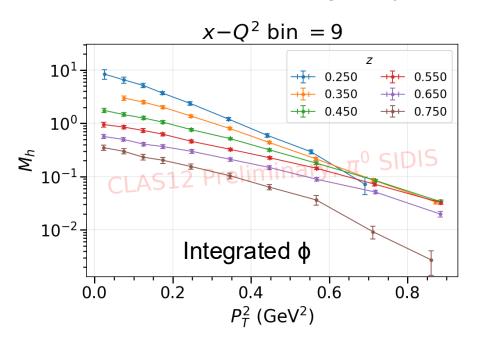




SIDIS YIELD

$N_{sidis}(p_T^2)$ for selected x-Q² = 2

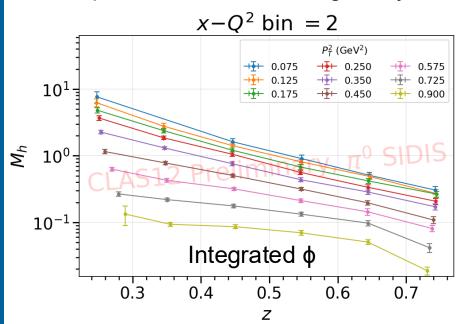
Left plot is normalized using DIS yield

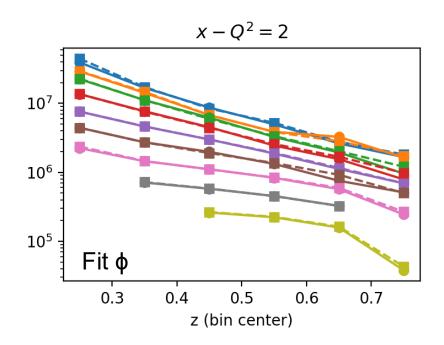


SIDIS YIELD

$N_{sidis}(p_T^2)$ for selected x-Q² = 9

Left plot is normalized using DIS yield

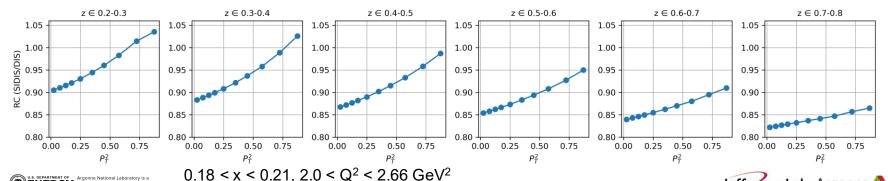




SIDIS YIELD

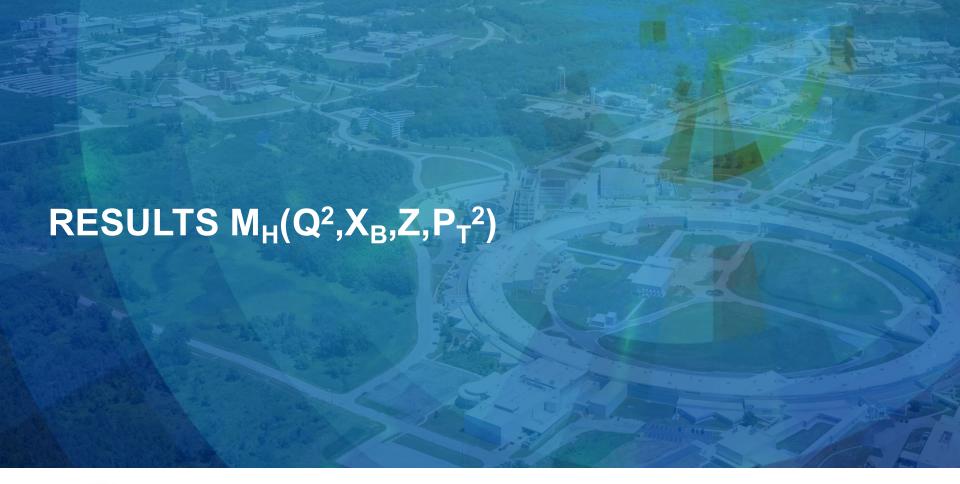
$N_{sidis}(z)$ for selected x-Q² = 2

Left plot is normalized using DIS yield



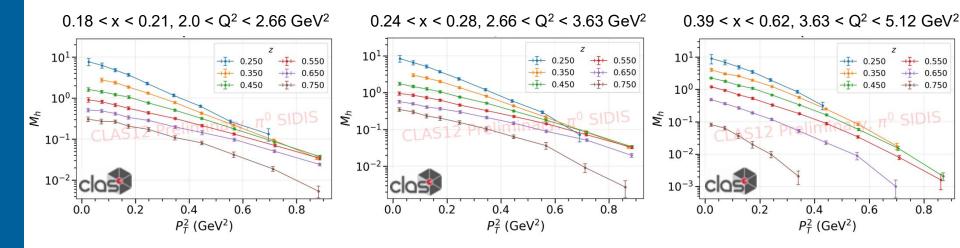
RADIATIVE CORRECTIONS

$RC_{M_{h}} = \frac{RC_{SIDIS}}{RC_{dis}}$


HAPRAD for SIDIS

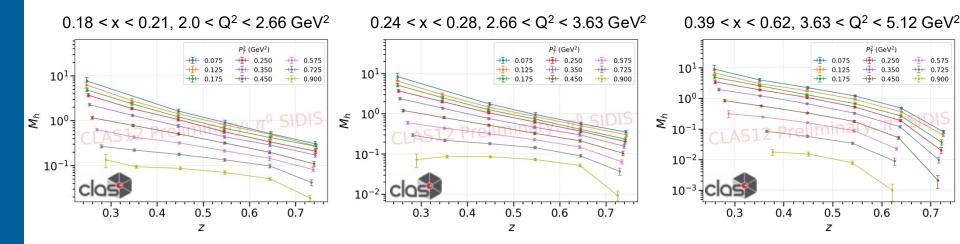
- π^0 SIDIS structure functions are modeled as the average of the π^+ and π^- structure functions within a Wandzura–Wilczek–type approximation (https://arxiv.org/abs/1807.10606)
- Currently the exclusive radiative tail is evaluated using MAID2007 input: https://maid.kph.uni-mainz.de/maid2007/cross.html
- AAO_RAD will be used when we have enough MC
- Contributions from the ρ and ω channels are not included in the present implementation
- DIS correction is based on Mo-Tsai approach

Jefferson Lab Argonne

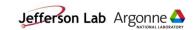


RESULTS

$M_h(p_T^2)$ for selected x-Q² bins

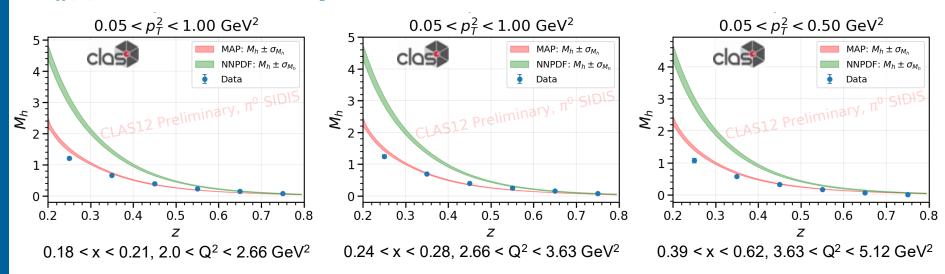


- LO, gaussian approximation:
- $\frac{\mathrm{d}^2 M^h}{\mathrm{d}z \, \mathrm{d}P_T^2} = \left(\frac{\mathrm{d}^4 \sigma}{\mathrm{d}x \, \mathrm{d}Q^2 \, \mathrm{d}z \, \mathrm{d}P_T^2}\right) \left/ \left(\frac{\mathrm{d}^2 \sigma^{\mathrm{DIS}}}{\mathrm{d}x \, \mathrm{d}Q^2}\right) = \frac{N}{\pi \langle P_T^2 \rangle} \, \exp\left(-\frac{P_T^2}{\langle P_T^2 \rangle}\right)\right$
- The behavior is consistent with an LO Gaussian model, except for a high- $P_{\rm T}^2$ downturn attributable to the phase-space restriction $M_{\scriptscriptstyle X} > 1.5~{\rm GeV}$
- Only statistical uncertainties are shown


RESULTS

$M_h(z)$ for selected x-Q² bins

- $ln(M_h(z))$ is approximately linear, but drops at large z due to the $M_x > 1.5$ phase-space cut
- Only statistical uncertainties are shown

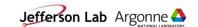


RESULTS

P_T^2 integrated multiplicity:

$$M_h = \frac{\sum_{q} e_q^2 f_q(x) D_q(z)}{\sum_{q} e_q^2 f_q(x)}$$

$M_h(z)$ integrated over P_T^2 for selected x-Q² bins

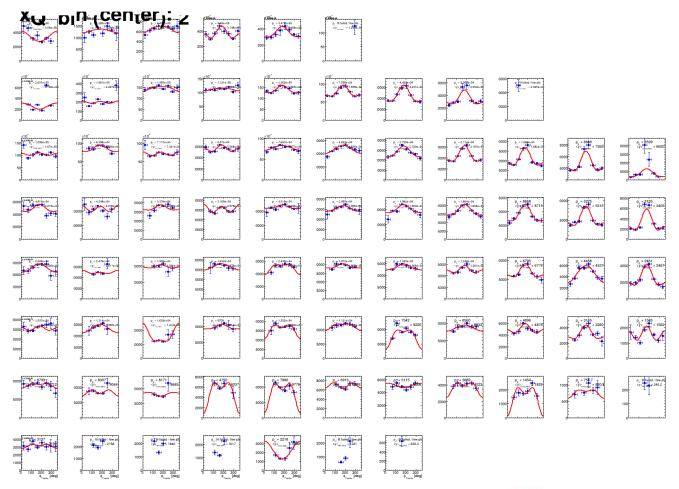

- M_h was integrated over the P_T^2 range that preserves full z coverage
- The theoretical curves were computed with CT10nlo PDFs using two fragmentation-function sets:
 - **NNFF**, fitted only to single-inclusive hadron production in e^+e^- annihilation
 - MAPFF, which additionally includes charged-hadron multiplicity data from HERMES and COMPASS
- After integrating over P_T^2 , multiplicities vs. z follow the trend of LO predictions using MAPFF FF and CT10nlo PDFs

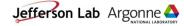
CONCLUSIONS AND OUTLOOK

- Preliminary Neutral pion SIDIS Multiplicities (x_B, Q², z, P_T²) at CLAS12 are available
- ullet After integrating over P_T^2 , multiplicities vs. z follow the trend of LO predictions using MAPFF fragmentation functions and CT10nlo PDFs
- The data will provide new constraints on unpolarized TMD PDFs and fragmentation functions (FFs) and enabling tests of isospin symmetry in FFs

In progress:

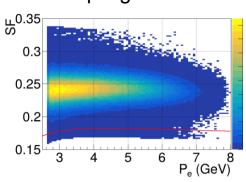
- Accumulate more MC to enable matrix-based multidimensional unfolding of migrations
- Estimate systematic uncertainties

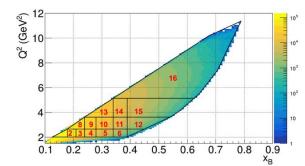


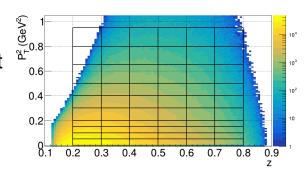


PHI FITS

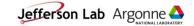
xQ2 = 2



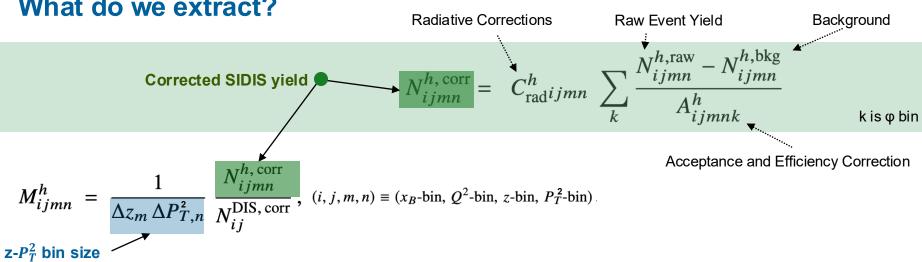

PID AND EVENT SELECTION

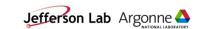

Starts with CLAS12 reconstruction algorithm

- Electron
 - $-2 < p_e < 8 \text{ GeV}$
 - y < 0.75
 - Z-Vertex cut
 - DC and PCAL fiducial
 - Sampling Fraction



- Photon
 - $E_{\gamma} > 0.5 \text{ GeV}$
 - e- γ opening angle > 8 deg
 - $-0.9 < \beta < 1.1$
- **■** π⁰
 - Candidates are reconstructed from photon pairs
 - $x_F > 0 [x_F = 2P_{h,L}/\sqrt{s}]$: current fragmentation region
 - $M_x > 1.5 \text{ GeV}$
 - $-\alpha_{yy} > 6 \cdot Exp(1 p_{\pi}) + 0.5 deg$





MULTIPLICITY

What do we extract?

