

CLAS12 Collaboration Meeting

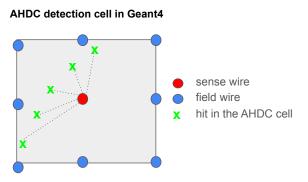
ALERT Simulation, Reconstruction and Calibration

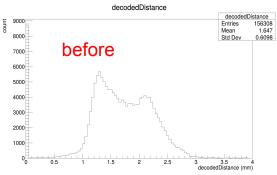
Felix Touchte Codjo

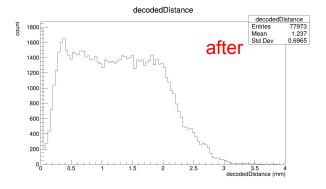
felix.touchte-codjo@ijclab.in2p3.fr

-- PhD student --

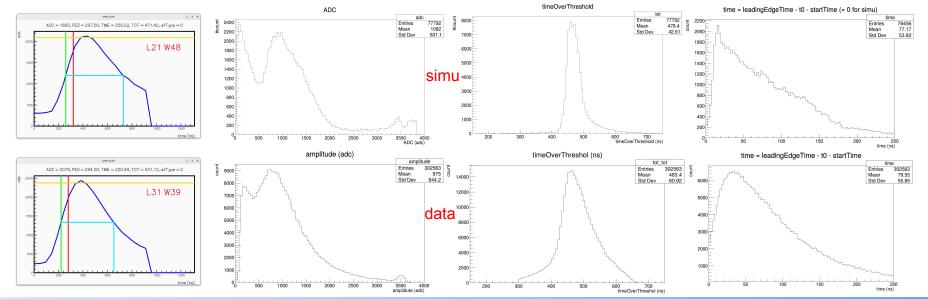
November 19, 2025 1 1 / 10


Simulation – AHDC waveform digitization





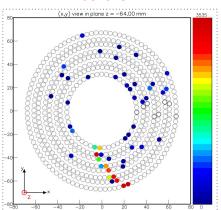
- We had an issue with the tracking in simulation
- ♣ Before, we used the drift time of all the hits in a AHDC detection cell
 - we reconstructed a mean of all distances
 - having nothing below 1 mm was the main source of our issue
- ♣ To fix it, we decided to only use the drift time of the closest hit
 - the distance is now well distributed over the cell size
 - we observe an improvement in the tracking

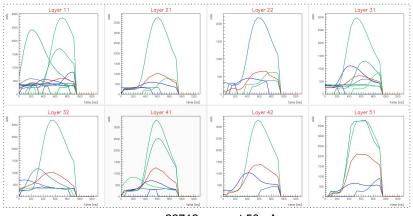


Simulation – Comparison with data

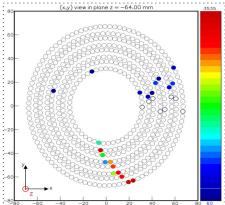
- ◆ We compared deuteron signals from elastics data (run 22712, 2 GeV, D2) with simulation
- The distributions look very similar
 - The ADC distribution presents two peaks
 - The first one is noise, so bad reconstructed waveform
 - The second one is characteristic of the detected particle
 - \circ $\,$ $\,$ The separation between the two peaks is more clear in simulation $\,$ $\,$ \circ
- We have overestimated the noise in simulation
- But we have not been able to spread the distributions as in real data (cf. ToT and the time distributions)
- We should point that an ADC calibration for real data is being done by **Churamani Paudel**, but it has not been included in this analysis.

Reconstruction - Hit selection for real data





- We have a lot of hits in the AHDC (> 20 % occupancy in the first layer)
- Most of them are noise and make the tracking difficult
- ♣ However, we identified clear patterns that can be used to get rid of them
 - At first, we extracted various informations from the signals: leadingEdgeTime, timeOverThreshold, amplitude, pedestal
 - Then we applied raw cuts, loaded from a CCDB, based on these informations (occupancy ~ 4 %)


- However, we had a low ADC cut
 - o it resulted to a low detection efficiency of the protons
- Finally, when **Noémie Pilleux** initiated a waveform classification (next slide) we have been able to prevent this low ADC cut

before

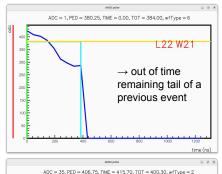
after wfType <= 2 & non ADC cuts

-- run 22712, current 50 nA --

Reconstruction – Waveform classification

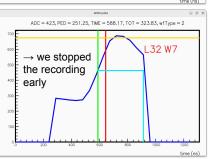
Description

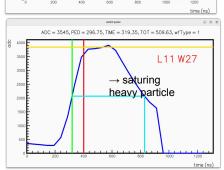
- \circ wfType 6 \Rightarrow too short (nsamples <= 10)
- wfType 5 ⇒ decreasing baseline
- o wfType $4 \Rightarrow$ bad ToT (ToT < 300)


I 11 W29

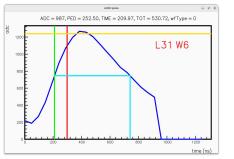
- wfType 2 ⇒ bad trailingEdgeTime
- o wfType 1 ⇒ saturating
- wfType $0 \Rightarrow OK$

We only use wfType <= 2
(and later wfType <= 3)
because they have a good time reconstruction.


L11 W39


→ noise signal

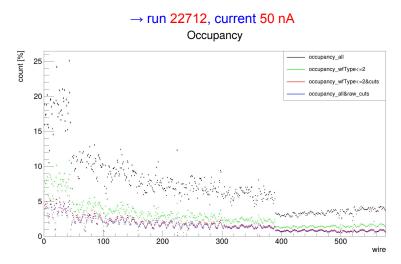
type 3 classified as 2 work to be done.



systematically have

a lower ToT

Reconstruction – Hit selection efficiency

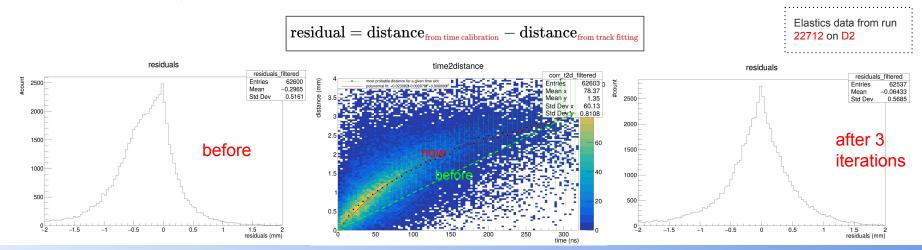

The table below resumes the performance of hit selection efficiency over the coatjava version.

- Of course, the occupancy statistics depend on the beam current
- We looked at the number of reconstructed elastic events to estimate the quality of our hit selection
- We see that the raw cuts were very restrictive

- The elastic detection efficiency increases almost by a factor 2
- *This increase also benefits from the time calibration made by Michael Paolone.

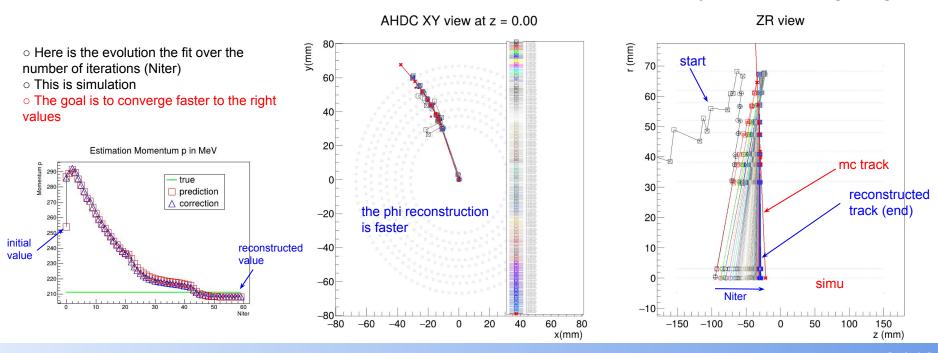
→ run 23003, beam current 200 nA

L	rawCuts 13.0.1 time >= 200 time <= 500	wfTye <= 1 coat 13.3.0	wfTye <= 2 coat dev	wfTye <= 2 & cuts coat 13.4.0	wfType <= 2 & cuts (strong) coat dev
				time >= 0 time <= 340 *t0 substractred	time >= 0 time <= 340 *t0 substractred
	tot >= 350 tot <= 650			tot >= 300 tot <= 750	tot >= 340 tot <= 620
	ped >= 180 ped <= 360			ped >= 120 ped <= 350	ped >= 120 ped <= 350
				samples > 10	samples > 14
40 %	6 %	4 %	15 %	8 %	5.5 %
-	9472 2485 3662	5725 921 3020 ↑	-	17882 4394 6757	12650 2343 5502
	-	40 % 6 % - 9472 2485 3662	40 % 6 % 4 % - 9472 5725 2485 921 3662 3020	40 % 6 % 4 % 15 % - 9472 5725 - 2485 921 3662 3020	samples > 10 40 % 6 % 4 % 15 % 8 % - 9472 5725 - 17882 2485 921 4394 3662 3020 6757



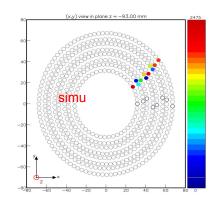
Calibration – time2distance

- ♦ We didn't have a calibration of the time2distance in real data
- ◆ The net result was that the residual distribution was systematically shift to one side
 - The distance in the *time versus distance* plot is the distance between the wire and the Kalman Filter track
 - The dashed green line represents the (non calibrated) time2distance used before the tracking
 - The smooth red line shows the real tendency of the time2distance
 - The polynomial coefficients of this fit is stored in a CCDB
 - When we re-run the reconstruction with this estimation of the time2distance, we obtained a better residual distribution
 - Additional, AHDC waveform simulation now use the same time2distance as real data



Reconstruction – Kalman Filter

- We use the Kalman Filter for the AHDC track reconstruction
- First implementation of the algorithm is due to Mathieu Ouillon and Éric Fuchey
 - o I replace them on this task
- ♣ A lot of works remain to be done on the Kalman Filter but we can already see interesting things.




Reconstruction – Next steps for Kalman Filter

- Here is our plan for the Kalman Filter
 - Use all the hits for the Kalman Filter
 - 2. Use the electron vertex
 - 3. Use the ATOF information
 - 4. Remove problematic hits
 - 5. Improve the energy lost
 - 6. Tune Kalman Filter parameters (measurement and process noises, initial error covariance matrix, number of iterations, and so on)
 - 7. Take into account the deposited energy (time/distance resolution versus ADC)
 - 8. Work on the computation time

Conclusion

- ♠ A lot of work have already been done on the simulation, the calibration or the reconstruction for the AHDC
 - Waveform digitization
 - Hit selection and waveform classification
 - time2distance implementation
 - Development of monitoring tools for the Kalman Filter
- But a lots remain to be done, especially on the Kalman Filter
 - We hope to present you a final version of the Filter during the next Collaboration meeting

-- Thank you for your time --