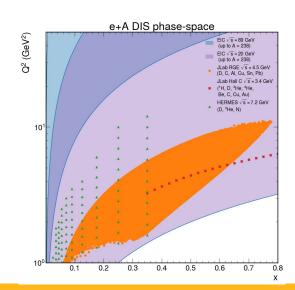
Updates on RG-E inclusive analysis

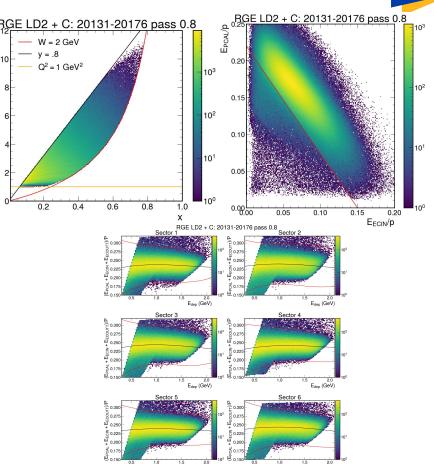
Ryan Milton UC Riverside

CLAS Collaboration Meeting November 19th, 2025



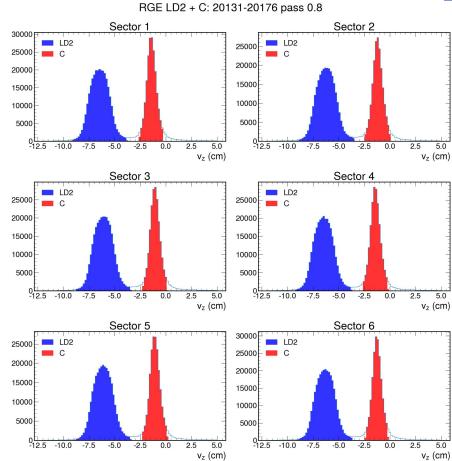
Overview of analysis

- Goal: dσ/dxdQ² for different nuclei with RGE
- Currently focusing on LD2 + C data from runs 20131-20176 pass 0.8
- Using <1% of the data from these runs (.023 mC/21.81 mC)



UCR

Summary of electron selection


- Electron selection follows selection from RG-A and RG-M
- DIS cuts: $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV, y < 0.8
- Extra cuts: $\theta > 5^{\circ}$, 2 GeV < p < 8 GeV
- Fiducial cuts on PCAL V & W, DC distance to edge
- Partial sampling fraction cut on E_{PCAL}/p vs. E_{ECIN}/p
- Tighten SF vs. E_{dep} to $\mu \pm 3.5\sigma$

Target selection

- Fit z vertex distribution with sum of two Gaussians
- LD2: μ_{LD2} ± 3σ_{LD2}
 C: μ_C ± 5σ_C

Calculating absolute cross sections for inclusive DIS

$$\frac{d^2\sigma_i}{dx \, dQ^2} = \frac{1}{\underbrace{\Delta x} \cdot \underbrace{\Delta Q^2}_{\text{dimensionless}} \cdot \underbrace{\frac{N_i}{\text{counts}}}_{\text{counts}} \cdot \underbrace{\frac{CPB}{\text{cm}^2 \to \text{pb}}}_{\text{dimensionless}} \cdot \underbrace{\frac{C_{c,i}}{\text{dimensionless}}}_{\text{dimensionless}}$$

$$\left[\frac{d^2\sigma}{dx\,dQ^2}\right] = \frac{1}{[\Delta x][\Delta Q^2]} \cdot \frac{[N]}{[\eta][R]} \cdot \frac{[CMB]}{[\mathcal{L}_{\rm int}]} \cdot [C_c] = \frac{1}{(1)({\rm GeV}^2)} \cdot \frac{({\rm counts})}{(1)(1)} \cdot \frac{({\rm cm}^2 \to {\rm pb})}{({\rm cm}^{-2})} \cdot (1) = \frac{{\rm pb}}{{\rm GeV}^2}$$

- $\Delta x \Delta Q^2$: kinematic bin volume
- N_i: Number of reconstructed electrons in bin i that pass cuts
- R: Radiative correction in bin i
- n_i: acceptance and efficiency correction in bin i
 CPB: cm² to pb conversion factor of 1x10³⁶

- \$\mathcal{L}_{\text{int}}\$: integrated luminosity for runs
 \$C_{\text{c, i}}\$: Coulomb corrections in bin i

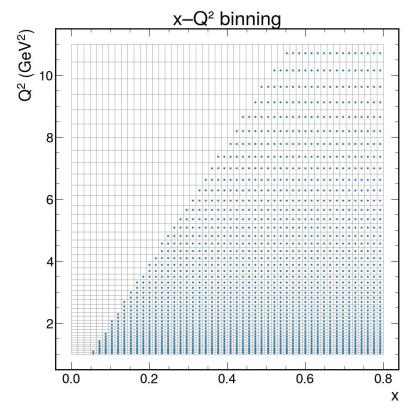
Motivated by Equation 4 from V. Klimenko, et al. (CLAS Collaboration), Phys. Rev. C 112, 025201 (2025).

Calculating absolute cross sections for inclusive DIS

$$\frac{d^2\sigma_i}{dx\,dQ^2} = \underbrace{\frac{1}{\underbrace{\Delta x} \cdot \Delta Q^2}}_{\text{dimensionless GeV}^2} \cdot \underbrace{\frac{N_i}{\text{counts}}}_{\text{counts}} \cdot \underbrace{\frac{CPB}{\text{cm}^2 \to \text{pb}}}_{\text{cm}^2 \to \text{pb}} \cdot \underbrace{\frac{C_{c,i}}{\text{dimensionless}}}_{\text{dimensionless dimensionless}}$$

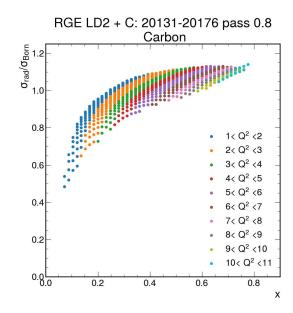
$$\left[\frac{d^2\sigma}{dx\,dQ^2}\right] = \frac{1}{[\Delta x][\Delta Q^2]} \cdot \frac{[N]}{[\eta][R]} \cdot \frac{[CMB]}{[\mathcal{L}_{\rm int}]} \cdot [C_c] = \frac{1}{(1)({\rm GeV}^2)} \cdot \frac{({\rm counts})}{(1)(1)} \cdot \frac{({\rm cm}^2 \to {\rm pb})}{({\rm cm}^{-2})} \cdot (1) = \frac{{\rm pb}}{{\rm GeV}^2}$$

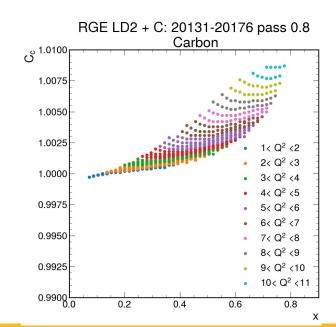
- $\Delta x \Delta Q^2$: kinematic bin volume
- N_i: Number of reconstructed electrons in bin i that pass cuts
- R: Radiative correction in bin i
- n_i: acceptance and efficiency correction in bin i
 CPB: cm² to pb conversion factor of 1x10³⁶


- \$\mathcal{L}_{\text{int}}\$: integrated luminosity for runs
 \$C_{\text{c, i}}\$: Coulomb corrections in bin i

Motivated by Equation 4 from V. Klimenko, et al. (CLAS Collaboration), Phys. Rev. C 112, 025201 (2025).

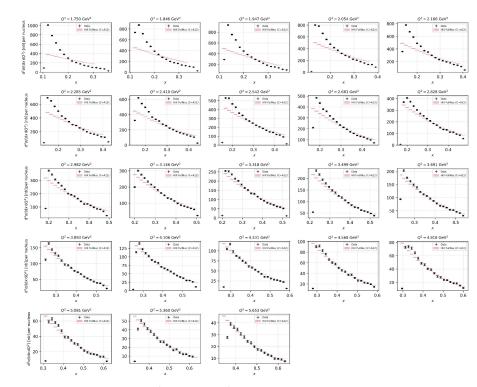
Radiative and Coulomb corrections procedure


- Define x-Q² binning and only keep bin centers where y<1
 - $\circ y = Q^2/(2E_{beam}m_p x)$
- Plug bin centers into EXTERNALS
- Calculate radiative corrections and Coulomb corrections for carbon



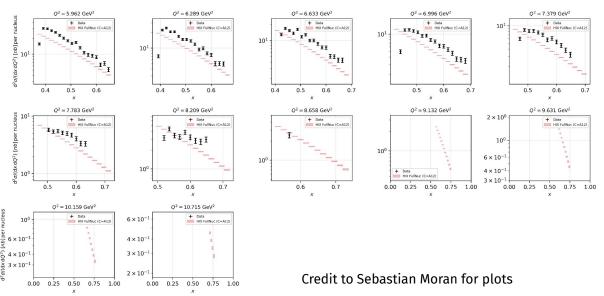
Radiative and Coulomb corrections for carbon

- Coulomb correction for carbon has little impact
- Due to y<0.8 cut, the largest radiative correction is about 0.5



Comparison to PDF predictions

- Without any acceptance and efficiency corrections, we compare to theory predictions for carbon
- For integrated luminosity, using
 2.1x10⁴⁰ cm⁻² * .001 (.1% of run data)
- Use Yadism to get cross sections from PDFs
 - A. Candido, et al., Eur.Phys.J.C 84 (2024)
 7, 697
- Using nCTEQ15HIX PDF set
 - O E. P. Segarra, et al., Phys. Rev. D **103**, 114015

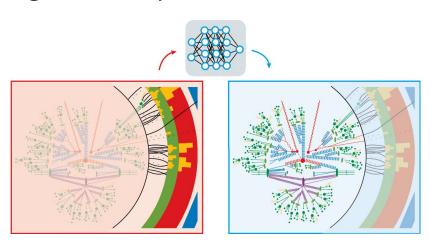


Credit to Sebastian Moran for plots

Comparison to PDF predictions

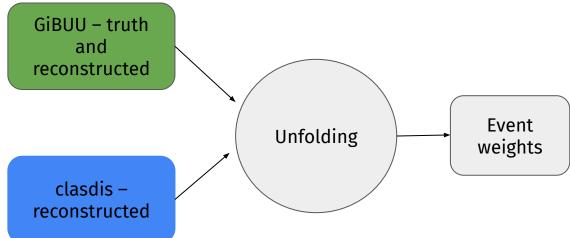
- Dropping bins with large error bars
- Overall see good agreement between data and predictions, with disagreement at lower and higher Q² values

Calculating absolute cross sections for inclusive DIS

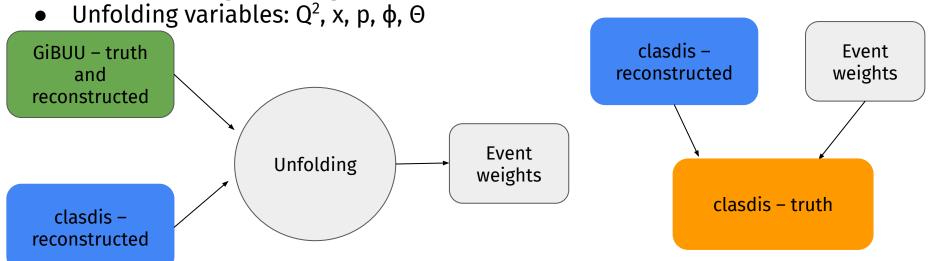

$$\frac{d^2\sigma_i}{dx\,dQ^2} = \frac{1}{\underbrace{\Delta x}\underbrace{\Delta x}\underbrace{\Delta Q^2}_{\text{dimensionless}}\underbrace{\frac{N_i}{R_i}\underbrace{\eta_i}_{\text{dimensionless}}\underbrace{\frac{CPB}{L_{\text{int}}}}\underbrace{\underbrace{C_{\text{counts}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cm}^{-2}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{dimensionless}}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{dimensionless}}\underbrace{\underbrace{C_{\text{cint}}}_{\text{cint}}\underbrace{C_{\text{cint}}}_{\text{cint$$

- η_i: acceptance and efficiency correction in bin i
- Not yet incorporating efficiency corrections
- Can further correct cross sections with unfolding

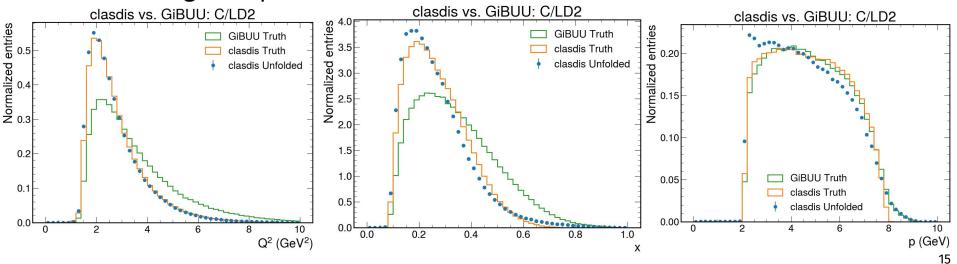
Unfolding procedure


- Given the measured data, want to remove detector effects and bin migration to get true physics information
- Unfolding with an ML-based version of Iterative Bayesian Unfolding
 - o IBU used in V. Klimenko, et al. (CLAS Collaboration), Phys. Rev. C 112, 025201 (2025)
 - o IBU version we'll use detailed here: R. Milton, et al., JINST 20, P05034 (2025)
- Doing the unfolding with multiple observables simultaneously

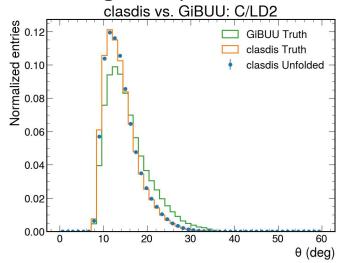
Closure test

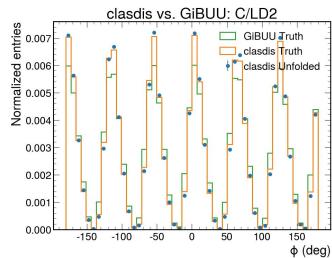

- To test the unfolding procedure, use a closure test with two Monte Carlos
- Use clasdis as pseudodata and GiBUU as simulation data. Run each through electron selection. Currently only using 500k events for unfolding
- After unfolding, should get the truth-level clasdis distributions
- Unfolding variables: Q², x, p, φ, Θ

Closure test


- To test the unfolding procedure, use a closure test with two Monte Carlos
- Use clasdis as pseudodata and GiBUU as simulation data. Run each through electron selection. Currently only using 500k events for unfolding
- After unfolding, should get the truth-level clasdis distributions

Results of closure test


- See overall good agreement between truth and unfolded distributions
- The input to the unfolding are observables from electrons that pass selections. We are not yet correcting for efficiency
- Unfolding multiple observables maintains correlations between them



Results of closure test

- See overall good agreement between truth and unfolded distributions
- The input to the unfolding are observables from electrons that pass selections. We are not yet correcting for efficiency
- Unfolding multiple observables maintains correlations between them

Summary

- Interested in dσ/dxdQ² of nuclei
- Incorporated radiative and Coulomb corrections
- See good agreement between cross sections and theory predictions for carbon
- Unfolding closure test showing promising results
- Next steps:
 - Use pass 0.9 data for analysis
 - Add efficiency corrections to procedure and incorporate into cross section predictions

Thank you!

Backup

clasdis vs. GiBUU

- Generated clasdis and GiBUU samples through OSG using rge_spring2024_LD2-C-sol and rge_spring2024_LD2-C-liq configurations
- clasdis options: --beam 10.5473 --targ deuteron --z 0
- GiBUU options: --targ C (or D) --ebeam 10.5473 --kt 0.64
- Looking at 30 million events for each generator, split evenly between carbon and deuterium
- Run the data through electron selection