

Cornell High-Q update

Fumio Furuta, Daniel Gonnella, Mingqi Ge, Daniel Hall, Matthias Liepe

Cornell University

TTC High-Q Working Group Meeting 23Apr2015

HTC9-4 results at Cornell

AES018 w/ high power coupler

Short history

- □ HTC9-3 test at Cornell, reported at the previous mtg.
- Disconnected cavity from HTC.
- installed high power coupler, but no HPR on cavity prior to installation.
- □ HTC9-4 test , slides from Dan Gonnella.

HTC9-4, AES018 w/ coupler

Overview

- AES018 (HTC9-3) was assembled with High Power Coupler – this is the only change between HTC9-3 and HTC9-4
- Two cool downs were completed
 - Both were very fast with $\Delta T_{vertical} \ge 60 \text{ K}$
- First cool down was used to check quench field and condition field emission
- In the second cool down the following was measured:
 - Q₀ vs E (2.0 and 1.6 K)
 - Q_0 vs Forward Power
 - $Q_0 vs Q_{ext}$
 - Heating and Pressure of the High Power Coupler

Cool Downs

Cool Down 1

- Cool Down Rate ≈ 60 K/min
- $\Delta T_{vertical} \approx 74 \text{ K}$
- $\Delta T_{\text{horizontal}} \approx 8 \text{ K}$
- $B_{longitudinal}(10 \text{ K}) \approx 10 \text{ mG}$
- B_{trans}(10 K) ≈ 0.6 mG

Cool Down 2

- Cool Down Rate ≈ 24 K/min
- $\Delta T_{vertical} \approx 63 \text{ K}$
- $\Delta T_{\text{horizontal}} \approx 8 \text{ K}$
- $B_{longitudinal}(10 \text{ K}) \approx 22 \text{ mG}$
- B_{trans}(10 K) ≈ 3.4 mG

- Radiation peaked at ~10 R/hr at 16 MV/m after conditioning.
- Prior to quench, Q_0 was 2.2x10¹⁰ at 15 MV/m and 2.0 K.

- Good Q₀ vs E agreement between the two cool downs
- Suggests that our "fast cool down" sufficiently expels magnetic field (consistent with HTC9-3 measurements)

- Q₀ remained unchanged between HTC9-3 and HTC9-4
- Takeaway: High Power Coupler had no negative impact on Q₀

Q₀ was unaffected by Q_{ext} between 4x10⁷ and 3x10⁸

HTC: Schedule

- AES031: receive from FNAL
- Magnetic shield: receive from JLAB
- HTC9-5: assembly completed
- HTC9-5: installation in test area
- HTC9-5: test ends
- HTC9-5: remove from test area

May 11, 2015 May 11, 2015 May 29, 2015 June 9, 2015 June 26, 2016 June 30, 2015

Recent 9-cell VT results AES030

Baseline test as none N2 dope cavity

AES030, VT history

	VT1 N2 dope	VT2 Re-HPR	VT3 None dope baseline	VT4 (planed) N2 dope
Bulk VEP	120um	-	38um	-
Degas	800C*5hrs	-	-	800C*3hrs
N2 dope	20min./30min. ~40mTorr	-	-	2min./6min. ~20mTorr
Light VEP	26um	-	-	7um
USC+HPR	Yes	Yes	Yes	Yes
Qo at 16MV/m, 2K	2.5e10	3e10	1.7e10	
Quench field	17MV/m	17MV/m	30MV/m,	
Limit	Quench FE free	Quench FE free	FE triggered by quench	

AES030, 3rd VT Pass-band analysis

9

>30.9

OST analysis on pass-band

Red arrow and circle indicate quenched cell and location predicted by OST.

4pi/9; 4th cell

5pi/9; 3rd cell

6pi/9; 1st cell

7pi/9; 1st cell

8pi/9; 1st cell

No specific features at quench location predicted by OST

