Software Update GEM Digitization

Yuan Li, Weizhi Xiong
PRad-II / X17 Collaboration Meeting
2025/Sep/12

Introduction

Pure Geant4 simulation:

- Hits on the detector sensitive volume
- Particle's "accurate" vertex information(vector, energy, time, deposition)
- But not include effects of detector and electronics

Geant4 + GEM digitization, we could know:

- The signal pulse we will get from APV25
- Signal pile up effect, cluster size on GEM
- How many hits would be reconstructed in an event

Red: 3 real hits

Blue: clusters on 2 layers of strips

Black: false hits

Digitization Basic Structure

Basically 2 main processes, ionization and avalanche

Ionization model:

- 1. Number of ion pairs = Edep / 26eV (Poisson dist.)
- 2. Randomly put these ion electrons along the track
- 3. Traveling time to readout plane (Drift $v = 55 \text{ mm/}\mu s$)

Avalanche model (for each ion electron):

- 1. Charge number of multiplication (Gaussian, $\sigma = gain/\sqrt{20}$)
- 2. Spatial distribution described by Cauchy-Lorenz, $(diffusion = 0.1 mm^2/\mu s)$
- 3. Numerical integration for charge on each strip
- 4. Generate pulse from charge for each strip (decay time = 56 ns)

Digitization Output of Signal Hit

- Digitization output pulse of a signal hit
- 25ns / sampling, total of 6 samples
- Assuming a trigger latency to let the pulse's peak occurs at 3rd sample (index 2)

Simulated APV25 pulse of single hit on GEM

- Single hit events for the gain measurement
- Adjust the mean gain coefficient of multiplication
- Calibrated with the GEM cosmic test data

Max ADC value in single hit events

Digitization Output of Signal Hit

- Digitization output pulse of a signal hit
- 25ns / sampling, total of 6 samples
- Assuming a trigger latency to let the pulse's peak occurs at 3rd sample (index 2)

Simulated APV25 pulse of single hit on GEM

- Single hit events for the gain measurement
- Adjust the mean gain coefficient of multiplication
- Calibrated with the GEM cosmic test data

Add the Background (X17,1um target, 50nA, He bag)

Input simulation files

- Signal file: energy of 30%-70% 2.2GeV e- in Geant4, single track
- Background file: 2.2GeV beam-on-target G4 simulation

Process

- Put one signal hit in each event, occurring at t = 0
- Open a time window(-200ns, 150ns) to put the entries from background root file(related to beam current)
- Each background entry has a random shift time(-200ns, 150ns)
- Average of 80 background hits on one chamber in this time window

The digitized strip signals in output event

Occupancy of Strips (X17,1um target, 50nA, He bag)

- Occupancy: the probability of a strip to be fired in an event
- Fired: mean ADC value of 6 samples is above threshold
- 80 average hits and max 40% occupancy is too high (no time cut)

Occupancy of Strips (X17,1um target, 50nA, He bag)

- Occupancy: the probability of a strip to be fired in an event
- Fired: mean ADC value of 6 samples is above threshold
- 80 average hits and max 40% occupancy is too high (no time cut)
- Implement time cut to reject:
 - \triangleright Remove strips that index of max sample is 0, 4, 5
- ~35 average hits, max 15% occupancy are still not good (with time cut)

Reduce Background Rates on GEM

GEM background rates of different X17 configurations:

- Helium bag instead of Aluminum vacuum pipe, will have significant lower rates
- 2um, 4um instead of 1um, will give another ~2, ~4 times lower rates

Reduce Background Rates on GEM

Two main background source(He bag config.):

- 1. 30um Aluminum beam window
- 2. Helium gas in the bag

GEM background rates of different X17 configurations:

- Helium bag instead of Aluminum vacuum pipe, will have significant lower rates
- 2um, 4um instead of 1um, will give another ~2, ~4 times lower rates

- Same luminosity with 1um, 50nA configuration
- Thicker target, lower beam current
- Background rate is expected to lower down

GEM Background Rates

Reduce Background Rates on GEM

Two main background source(He bag config.):

- 1. 30um Aluminum beam window
- 2. Helium gas in the bag
 - 2 um target, 25 nA, He bag
 - Background rejection time cut:
 - ➤ Max ADC appears at 2nd, 3rd, 4th sample

Number of Background Hits of an Event

- Same luminosity with 1um, 50nA configuration
- Thicker target, lower beam current
- Background rate is expected to lower down
 - 4 um target, 12.5 nA, He bag
 - Background rejection time cut:
 - ➤ Max ADC appeares at 2nd, 3rd, 4th sample

Number of Background Hits of an Event

Thicker Target Is More Ideal for GEM

- 4um target, 12.5nA beam
- Same luminosity with 1um target, 50nA beam
- Average of 7.7 hits one chamber, max of 4% occupancy still acceptable

Summary

- Have completed the development of GEM digitization
- Some effects are waiting to be added, such as cross talk
- The strips occupancy and background rates are too high on X17
- 4um, 12.5nA (instead of 1um, 50nA) could significantly reduce rate to 7.7 hits on one chamber per event
- Next step: try to reconstruct hits from digitization output

HyCal Radiation Dose (rad/hour) – 1um Ta, 2.2GeV, 50nA

2nd open layer max dose: 30 rad/h

2nd open layer max dose: 50 rad/h