



Geometric acceptance of the large and small absorbers for dark photons

Rafayel Paremuzyan

PRad/X17 collaboration meeting, September 12, 2025, Jefferson Lab

# Electro-produced heavy photon kinematics on fixed targets

- Unlike Bremsstrahlung, A' takes almost all the beam energy:  $E_{A'} \sim E_b(1 m_{A'}/E_b)$
- Peaked at forward angles:  $(m_{A'}/E_b)^{3/2}$



#### A' energy



# The Full simulation of the signal



$$e + Ta \rightarrow Ta e^-e^+e^-$$

A' is generated for 5 different masses - M [MeV]: 10, 17, 25, 35, 55

#### **Analysis conditions**

- Three or more clusters
- All clusters are charged,
- 0.03\*Eb < Cluster energy < 0.7\*Eb</li>
- Sum of all three cluster energies > 0.7 \*Eb

Slide from ERR. Plots represent the big absorber setup.

#### An example for 2200 MeV Beam and 17 MeV A'





#### **Decay electron** on HCal face







- At small masses (below 20 MeV) majority of decay electrons hit the 1st uncovered layer of HCal.
- Distributions for <u>positrons are identical</u>.
- The plan is to use the small absorber to increase acceptance for smaller masses and mitigate edge related effects.

## Big absorber



- Generated
- Accepted

**Smaller masses**: Majority of undetected A's has one of decay leptons (e<sup>-</sup> or e<sup>+</sup>) either hit the absorber or go through the ECal Hole.

<u>Higher masses</u>: Majority of undetected A's has one of decay leptons (e<sup>-</sup> or e<sup>+</sup>) large polar angle to miss the Lead Tungsten part of the HyCal.

# 2200 MeV Energy of A'



- Generated
- Reconstructed (e-,e+,e-)

The loss at high A' energies is high especially at smaller masses

### Simulations with smaller absorber

- Same generated A' events thrown to the new GEANT4 setup with smaller collimator, covering only 1st layer of crystals around the hole.
- In a similar manner events were reconstructed and analyzed.



#### Distribution on HCal face: Decay electron

- Eb = 2200 MeV
- M(A') = 17 MeV



## Angular distributions

#### **Significant improvement for 17 MeV**



## Energy sum distributions

#### Significant improvement for 17 MeV at high A' energies



## A' acceptance at different masses

- @ 10 MeV the gain is x3
- @ 17 MeV the gain is about 2.5
- @ 55 MeV the gain is insignificant



#### Summary

- At smaller masses (below 20 MeV) majority of A' decays have at least one of decay leptons either hit the absorber or travel through the beampipe
- Majority of survived A's have at smaller masses occupy the 1st uncovered layer of the HyCal
- At high masses > 50 MeV, the absorber doesn't play significant role in the acceptance
- Having smaller absorber increases the acceptance x3 for 10 MeV \*x2.5 for 17 MeV)
  - Also will mitigate edge related effects.

# Backup

# Big Absorber



### **Small Absorber**



#### No significant improvement at high mass

#### **Big absorber**

m = 55 MeV



#### **Small absorber**

m = 55 MeV



# Background processes in A' production w/e- beam off fixed target



MadGraph5 generator is used to generate A' assuming the signal particle is a dark photon.