Irradiating Ammonia at JLab for Polarized Solid Targets

Chris Keith
JLab Target Group

Outline

Irradiating ammonia & the results
Where to irradiate at JLab
Our plans
Current status

Irradiation and the results

Warm irradiation

- Bonn/Bochum & Virginia
- Performed in liquid argon (87.3 K)
- Electron energy 10 20 MeV
- Nominal fluence is about 10¹⁷ e⁻ cm⁻²
- Produces about 4 x 10¹⁹ spins/g
- Store samples in LN2
- Test DNP results days or weeks later

Results at 5 T & 1 K

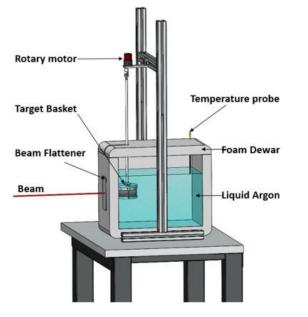
- NH3 reaches > 90%
- ND3 reaches about 25%

Cold irradiation

- Mike Seely (SLAC)
- Performed in superfluid helium (1 K)
- Electron energy 20 GeV
- Fluence up to few 10¹⁵ e⁻ cm⁻² with anneals 10 40 K
- Radical concentration unknown
- Test DNP during irradiation

Results at 5 T & 1 K

- NH3 reaches > 75% (after anneal)
- ND3 reaches about 25% (after anneal)


Irradiation cryostats

If the sample is submerged in liquid argon, the cryostat can be a simple styrofoam bucket or a more sophisticated metal dewar.

Periodically or continually rotate the sample for a more uniform dose.

A. Berlin, PhD thesis, Bochum (2015)

A. Conover et al, NIM, 1068 (2024) 169717

ADVANTAGES

- Cheap and simple
- Not much can go wrong
- Fixed temperature

DISADVANTAGES

Fixed temperature

Irradiation cryostats

Variable temperature cryostats using forced convection of helium gas thru LN2 have been used in Germany and SLAC

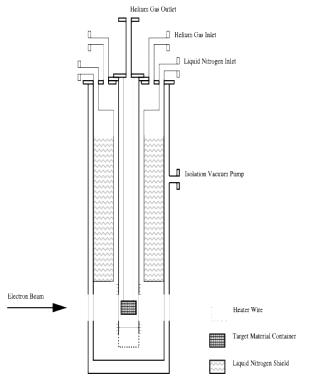


Figure 1: The irradiation dewar for the lithium deuteride target material. The material is cooled by circulating He gas at 183 K. The gas is cooled by a liquid nitrogen shield and temperature controlled by a heater.

S. Bultmann et al, SLAC-PUB-97904 (1998)

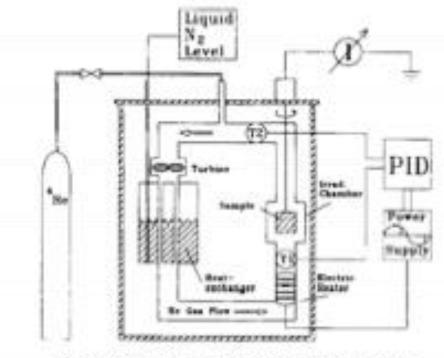


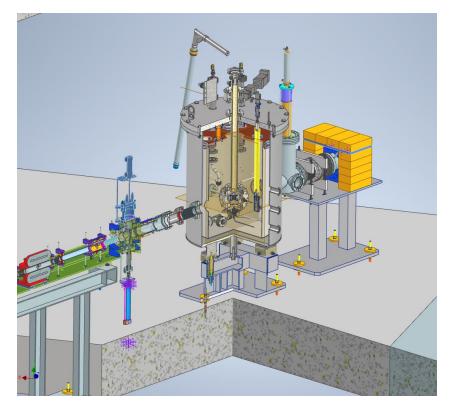
Fig. 1. Block diagram of the irradiation cryostat.

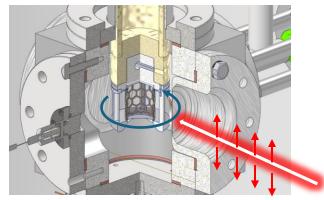
St. Goertz, NIM A 356 (1995) 20.

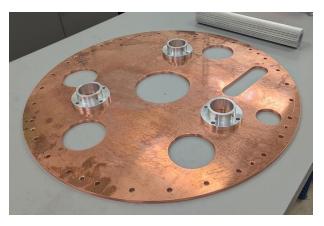
<u>ADVANTAGES</u>

Temperature > 87 K

<u>DISADVANTAGES</u>

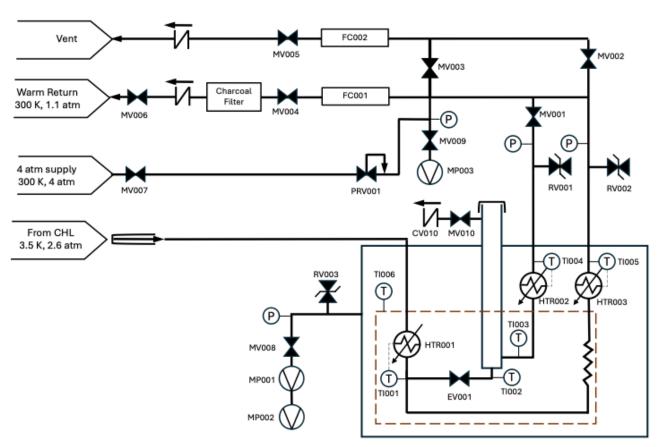

- More complicate
- Temperature > 87 K




JLab Irradiation cryostat

We're building a variable temperature using helium from one of JLab's cryogenic plants.

Casey Flanagan, Daniel Akers



JLab Irradiation cryostat

We're building a variable temperature using helium from one of JLab's cryogenic plants.

ADVANTAGES

Temperatures 2 – 300 K

<u>DISADVANTAGES</u>

More complicated

JLab Irradiation cryostat

We're building a variable temperature using helium from one of JLab's cryogenic plants.

GOAL PARAMETERS

Temperature: ≥ 2K

Beam energy: up to 8

MeV

Beam current: up to 10 μA

Sample size: up to 40 cm³

EXAMPLE: Warm Irradiation

Temperature: 85 ± 5 K

Fluence: 10¹⁷ e⁻ cm⁻² Beam current: 10 μA

Irradiation time: 3-6 h

Heat load: 44 W

Helium flow: 0.85 g/s

EXAMPLE: Cold Irradiation

Temperature: 2 K

Fluence: 5 X 10¹⁵ e⁻ cm⁻²

Beam current: 1 μA

Irradiation time: 1-2 h

Heat load: 4.4 W

Helium flow: 0.2 g/s

Where to irradiate

Three accelerator facilities are on site, and they have ALL been recommended to me!

- 1. UITF (Upgraded Injector Test Facility)
- 2. LERF (Low Energy Recirculator Facility)
- 3. CEBAF Injector

Where to irradiate

Three accelerator facilities are on site, and they have ALL been recommended to me!

- 1. UITF (Upgraded Injector Test Facility)
- 2 LERF (LOW En DESCRIPTION Office of Science Science
- 3. CEBAF Injecto

How to Use UITF

Irradiation of Polarized Target Materials

> Chris Keith Target Group

> > December 12, 2018

Status

- Cryostat design is 90% complete
- Fabrication is about 50% complete (spending paused since August)
- Dedicated beam line for target irradiation is under design
- UITF functioning and stable at 8 MeV and 20 μ A
- Operational limit is 100 nA (additional shielding is necessary for 10 μ A waiting for quote)
- UITF in operation (Brimrose Technology) until March/April 2026
- BeamNetUS proposals now open
- → https://www.beamnetus.org/

Status

- Cryostat design is 90% complete
- Fabrication is about 50% complete (spending paused since August)
- Dedicated beam line for target irradiation is under design
- UITF functioning and stable at 8 MeV and 20 μ A
- Operational limit is 100 nA (additional shielding is necessary for 10 μA waiting for quote)
- UITF in operation (Brimrose Technology) until March/April 2026
- BeamNetUS proposals now open
- → https://www.beamnetus.org/

The competition

HALL A

MOLLER cryotarget*
SoLID cryotarget*
SoLID polarized target*

HALL B

Cryotargets
Longitudinal polarized target*
Transverse polarized target*
Polarized ³He target*
Tritium target*

HALL C

Cryotargets
Hypernuclear target*
Tensor polarized target*
Transverse polarized target*

HALL D

Cryotargets
K-Long cryotarget*
Frozen spin target*

*Substantial construction and/or R&D

