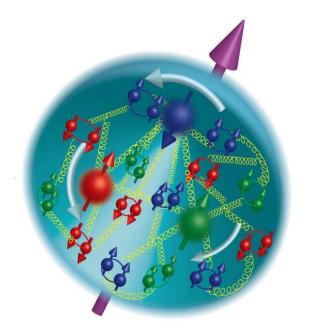
Polarized D at the EIC

Jan Vanek

University of New Hampshire


bl/Azz Tensor Collaboration, Jefferson Laboratory

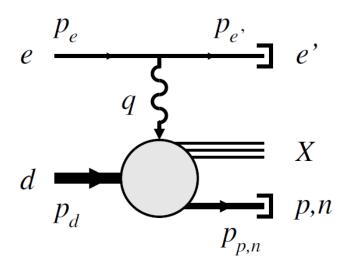
10/14/2025

PHYSICS MOTIVATION

- Main motivation: Understanding of internal structure of nucleons
- Historically was studied via Deep Inelastic Scattering (DIS) on protons
 - Relatively experimentally easy as we can accelerate electrons or protons
 - Structure functions and Parton Distribution Functions (PDFs) of proton reasonably well known
 - Despite long experimental efforts, still many open questions:
 - Spin structure of nucleons, Transverse and Generalized PDFs...
- We need also to need to measure **neutron internal structure** for full understanding of nucleon internal structure and QCD in general
 - Extraction of structure function F_2 of neutron
- Main challenges:
 - Neutrons are neutral and cannot be easily accelerated
 - Generally difficult to handle free neutrons

Jan Vanek, Polarized D at EIC

EXPERIMENTAL METHOD OVERVIEW


- Possible experimental solution: Tagged DIS (TDIS)
 - DIS on deuteron (d)
 - Measurement of the scattered electron and the spectator p or n

Challenges:

- Neutron is bound and not free, but we are interested in free n structure functions
 - Possible solution pole extrapolation
- Detection of the spectator p or n
 - Very difficult in fixed target experiments, as spectators have very low momentum and generally will stay in the target
 - Possible to measure at collider, such as the future Electron Ion Collider (EIC), as "target" is boosted
 - Still challenging, as spectators are very close to the hadron beam

• Advantages:

- Straightforward, when spectators are successfully detected
- Possible to measure p and cross-check with standard methods

A. Jentsch, Z. Tu, Ch. Weiss: Phys. Rev. C 104, 065205.

DEUTERON REDUCED CROSS SECTION

• Differential cross section on d can be written in terms of deuteron reduced cross ($\sigma_{red,d}$) section and photon flux:

•
$$d\sigma_d = Flux(x, Q^2) \times \sigma_{red,d} \times \frac{dx}{2} dQ^2 \frac{d\phi_{e'}}{2\pi} [2(2\pi)^3]^{-1} \frac{d\alpha_p}{\alpha_p} \frac{dp_{pT}^2}{2} d\phi_p$$

- We can get the n reduced cross section ($\sigma_{red,n}$) from the d reduced cross section and pole of d spectral function
 - $\bullet \ \sigma_{red,n} = \frac{\sigma_{red,d}(x,Q^2)}{[2(2\pi)^3]S_d(p_{pT},\alpha_p)[pole]}$
 - And similarly for proton reduced cross section

• Light-cone momentum fraction:

$$\bullet \alpha_p \equiv \frac{2p_p^+}{p_d^+} = \frac{2(E_p + p_{z,p})}{M_d}$$

Proton transfer momentum

•
$$p_{pT} = \sqrt{p_{x,p}^2 + p_{y,p}^2}$$

DEUTERON REDUCED CROSS SECTION

• Differential cross section on d can be written in terms of deuteron reduced cross ($\sigma_{red,d}$) section and photon flux:

•
$$d\sigma_d = Flux(x, Q^2) \times \sigma_{red,d} \times \frac{dx}{2} dQ^2 \frac{d\phi_{e'}}{2\pi} [2(2\pi)^3]^{-1} \frac{d\alpha_p}{\alpha_p} \frac{dp_{pT}^2}{2} d\phi_p$$

• We can get the n reduced cross section ($\sigma_{red,n}$) from the d reduced cross section and pole of d spectral function

$$\bullet \ \sigma_{red,n} = \frac{\sigma_{red,d}(x,Q^2)}{[2(2\pi)^3]S_d(p_{pT},\alpha_p)[pole]}$$

And similarly for proton reduced cross section

- Scattered electron
- Spectator proton + struck deuteron
- Photon flux
 - Light-cone momentum fraction:

$$\alpha_p \equiv \frac{2p_p^+}{p_d^+} = \frac{2(E_p + p_{z,p})}{M_d}$$

Proton transfer momentum

•
$$p_{pT} = \sqrt{p_{x,p}^2 + p_{y,p}^2}$$

POLE EXTRAPOLATION METHOD

$$\sigma_{red,n} = \frac{\sigma_{red,d}(x,Q^2)}{[2(2\pi)^3]S_d(p_{pT},\alpha_p)[pole]}$$

- $\sigma_{red,n}$ at the pole corresponds to a free n
 - $p_{pT}^2
 ightarrow -\alpha_T^2$ which means negative (unphysical) p_{pT}^2
- Solution is to experimentally measure $\sigma_{red,n}$ as a function of p_{pT}^2 for small positive values and extrapolate to the pole
 - We are using DIS on bound n to extract F_2 of free n
- Same measurement can be done for p
 - Cross check with proton F₂ extracted with traditional method
 - Can be used to select optimal deuteron spectral function

Deuteron spectral function

•
$$S_d(p_{pT}, \alpha_p)[pole] = \frac{R}{(p_{pT}^2 + a_T^2)}$$

Position of pole

•
$$a_T^2 = m_N^2 - \alpha_p (2 - \alpha_p) \frac{M_d^2}{4}$$

Residue of spectral function

$$R = 2\alpha_p^2 m_N \Gamma^2 (2 - \alpha_p)$$

POLE EXTRAPOLATION METHOD

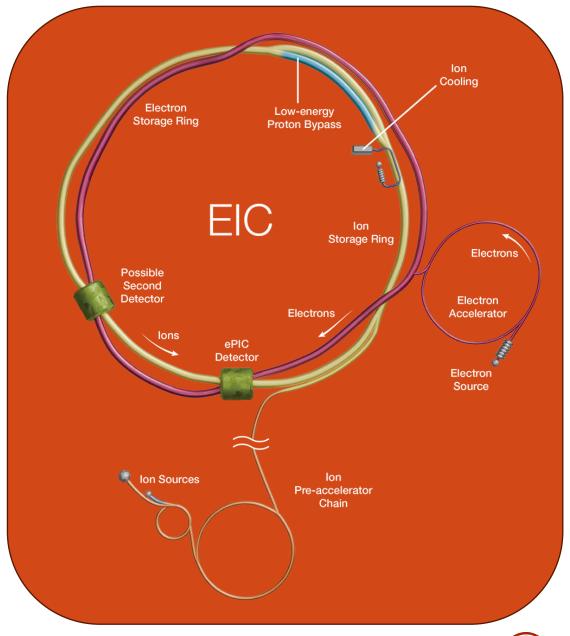
$$\bullet \ \sigma_{red,n} = \frac{\sigma_{red,d}(x,Q^2)}{[2(2\pi)^3]S_d(p_{pT},\alpha_p)[pole]}$$

- $\sigma_{red,n}$ at the pole corresponds to a free n
 - $p_{pT}^2
 ightarrow -\alpha_T^2$ which means negative (unphysical) p_{pT}^2
- Solution is to experimentally measure $\sigma_{red,n}$ as a function of p_{pT}^2 for small positive values and extrapolate to the pole
 - We are using DIS on bound n to extract F_2 of free n
- Same measurement can be done for p
 - Cross check with proton F₂ extracted with traditional method
 - Can be used to select optimal deuteron spectral function

- We can measure/calculate this
- External input from model/experiment
 - Deuteron spectral function

•
$$S_d(p_{pT}, \alpha_p)[pole] = \frac{R}{(p_{pT}^2 + a_T^2)}$$

Position of pole


•
$$a_T^2 = m_N^2 - \alpha_p (2 - \alpha_p) \frac{M_d^2}{4}$$

Residue of spectral function

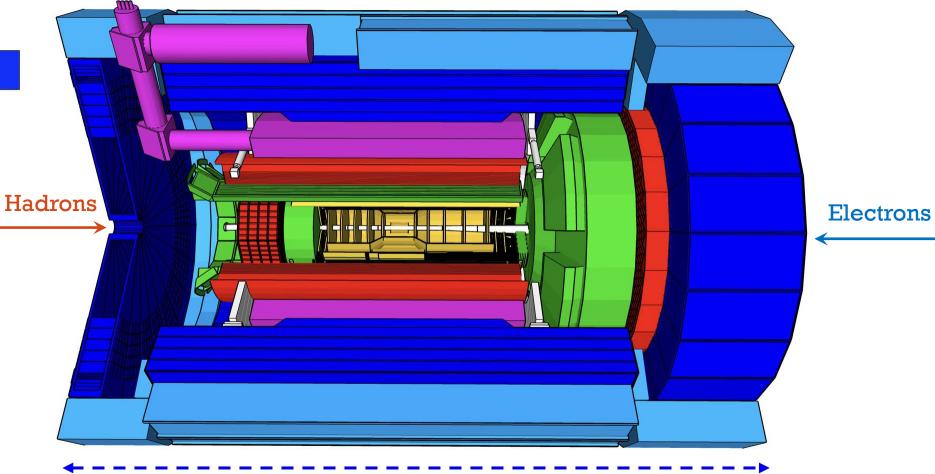
•
$$R = 2\alpha_p^2 m_N \Gamma^2 (2 - \alpha_p)$$

ELECTRON-ION COLLIDER

- Electron-Ion Collider (EIC) will be built in Brookhaven National Laboratory in the place of current Relativistic Heavy Ion Collider (RHIC)
- Hadron ring:
 - Upgrade of one of the existing RHIC rings
 - Possibility to accelerate wide range of hadrons
 - Protons, light nuclei (d, ³He...), heavy nuclei (¹⁹⁷Au, ²³⁸U...)
 - Protons and some light nuclei can be polarized
 - Large range of energies
 - From 41 GeV to 275 GeV for protons
- Electron ring:
 - Longitudinally polarized electrons
 - Continuous operation
 - One electron bunch replaced every second
 - Wide range of energies
 - From 8 GeV to 18 GeV

Jan Vanek, Polarized D at EIC

ePIC DITECTOR


Solenoidal Magnet

e/m calorimeters (ECal)

Time.of.Flight,
DIRC,
RICH detectors

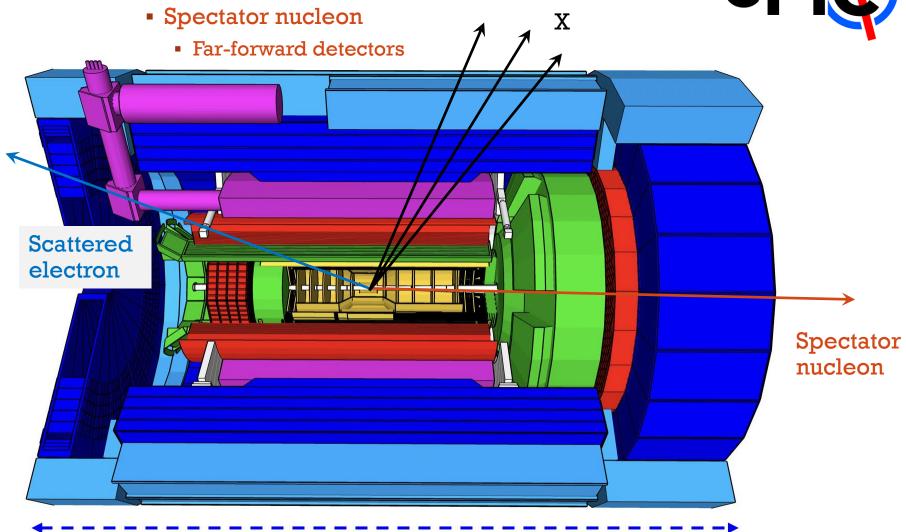
MPGD trackers

MAPS tracker

ePIC DITECTOR

- What do we need for TDIS?
 - Scattered electron
 - Central barrel detectors

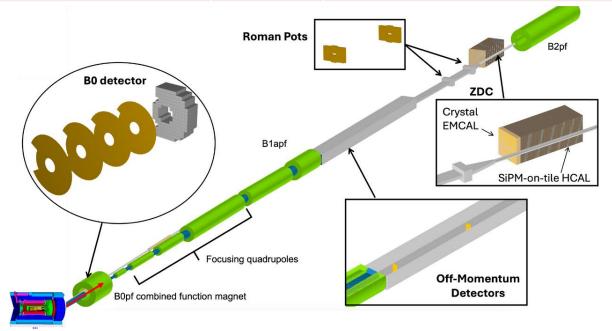
hadronic calorimeters


Solenoidal Magnet

e/m calorimeters (ECal)

Time.of.Flight,
DIRC,
RICH detectors

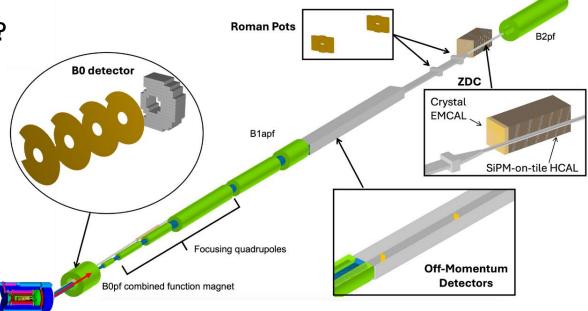
MPGD trackers


MAPS tracker

ePIC DETECTOR - FAR FORWARD

 Far-forward detector system for ePIC is designed to capture spectator hadrons which are very close to the beam

Detector	Hadron	Acceptance [mrad]
B0 Tracker	p	5.5-20.0
Off-momentum det.	p	0.0-5.0
Roman Pots	p	0.0-5.0
Zero Degree Calorimeter	n	0.0-4.0



ePIC DETECTOR - FAR FORWARD

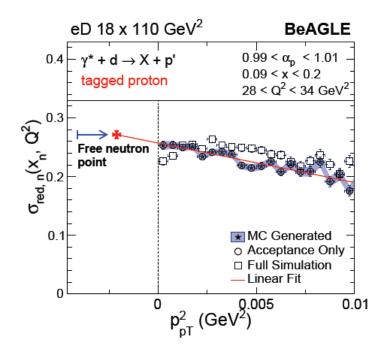
 Far-forward detector system for ePIC is designed to capture spectator hadrons which are very close to the beam

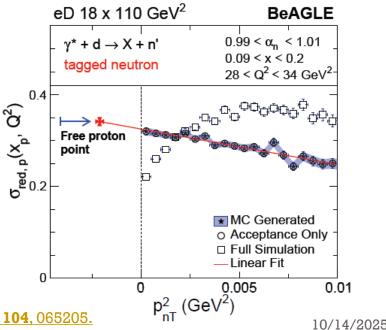
Detector	Hadron	Acceptance [mrad]
B0 Tracker	p	5.5-20.0
Off-momentum det.	p	0.0-5.0
Roman Pots	p	0.0-5.0
Zero Degree Calorimeter	n	0.0-4.0

- What do we need for TDIS?
 - Off-momentum detector
 - Protons with $\sim 1/2$ of beam energy
 - ZDC
 - Spectator neutrons

SIMULATION TOOLS

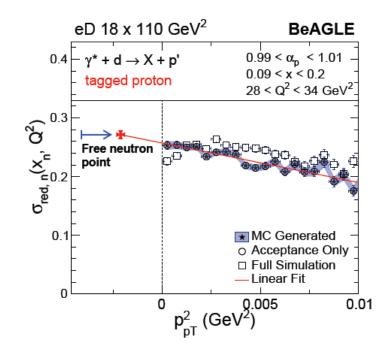
- Event generator: BeAGLE
 - Benchmark eA Generator for LEptoproduction
 - Key parts for deuteron simulation PYTHIA 6.4 and deuteron light-front spectral function
- Detector simulations: Full simulation using GEANT4
- Reconstruction: Transport matrix to calculate spectator momentum at interaction point from momentum at the detector
 - Currently tuned only to spectators with energy very close to $\frac{1}{2}$ of beam energy

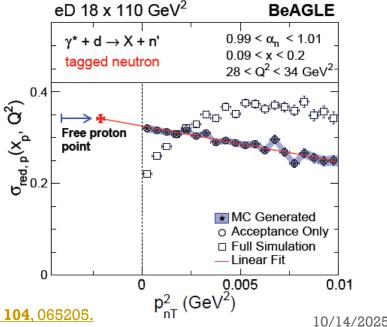



Wan Chang, Elke-Caroline Aschenauer, Mark D. Baker, Alexander Jentsch, Jeong-Hun Lee, Zhoudunming Tu, Zhongbao Yin, and Liang Zheng: Phys. Rev. D 106, 012007.

13

CURRENT RESULTS


- Reduced cross section of n (top) and p (bottom) extracted from MC eD collisions at $18 \times 110 \text{ GeV}^2$
 - MC Generated
 - True MC level information, without any acceptance effects
 - Acceptance only
 - Only detector acceptance is considered
 - Here basically identical to true MC as for the class of true MC events used, all spectator n and p hit the corresponding far-forward detector and efficiency is assumed to be 100%
 - Full Simulation
 - All detector and efficiency effect are considered
- Pole extrapolation
 - Fit to the true MC as a proof of concept
 - Works well for true MC
 - More challenging for full simulation



FUTURE PLANS

- New iteration of the presented study is being developed
 - Added full simulation of ePIC central barrel for electron reconstruction
 - Full integration of the whole simulation + reconstruction framework into ePIC simulation environment
 - Reconstruction of full kinematic range of spectator nucleons
- My involvement
 - Validation and checks of the new setup and cross-checks with the original results
 - Developing methods of signal extraction from Full Simulation level information
 - May require full unfolding procedure to correct for all efficiency and acceptance effects

SUMMARY

- Future EIC will allow measurement of internal structure of neutron via measurement of Tagged DIS on deuterons
 - Measurement of scattered electron and spectator p
- Method can be validated by measurement of structure functions of proton and compare to traditional methods for proton
- Method was validated using a simulation framework combining BeAGLE event generator with detector acceptance
- New version of simulation framework which is fully integrated int ePIC simulation environment is being developed
 - My main involvement is validation of the new simulation setup

10/14/2025

THANK YOU FOR AND TOR

Jan Vanek, Polarized D at EIC 10/14/2025